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Posture and Movement
Classification: The Comparison
of Tri-Axial Accelerometer
Numbers and Anatomical
Placement

Patient compliance is important when assessing movement, particularly in a free-living
environment when patients are asked to don their own accelerometers. Reducing the num-
ber of accelerometers could increase patient compliance. The aims of this study were (1)
to determine and compare the validity of different accelerometer combinations and place-
ments for a previously developed posture and dynamic movement identification algorithm.
Custom-built activity monitors, each containing one tri-axial accelerometer, were placed
on the ankles, right thigh, and waist of 12 healthy adults. Subjects performed a protocol
in the laboratory including static orientations of standing, sitting, and lying down, and
dynamic movements of walking, jogging, transitions between postures, and fidgeting to
simulate free-living activity. When only one accelerometer was used, the thigh was found
to be the optimal placement to identify both movement and static postures, with a misclas-
sification error of 10%. and demonstrated the greatest accuracy for walking/fidgeting and
Jogging classification with sensitivities and positive predictive value (PPVs) greater than
93%. When two accelerometers were used, the waist-thigh accelerometers identified
movement and static postures with greater accuracy than the thigh-ankle accelerometers
(with a misclassification error of 11% compared to 17%). However, the thigh-ankle accel-
erometers demonstrated the greatest accuracy for walking/ fidgeting and jogging classifi-
cation with sensitivities and PPVs greater than 93%. Movement can be accurately
classified in healthy adults using tri-axial accelerometers placed on one or two of the fol-
lowing sites: waist, thigh, or ankle. Posture and transitions require an accelerometer
placed on the waist and an accelerometer placed on the thigh. [DOI: 10.1115/1.4026230]
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1 Introduction
ly assess p and in

Developing tools to y
a free-living environment is of great importance. However, many

dies have reported patient issues using activity
monitors to assess physical activity in free-living environments
[1-4). One of the main issues which can affect patient compliance
in assessments are requesting them to wear multiple sensors [5}
which can be too cumbersome for long-term use [6]. Using
numerous activity monitors per subject can provide information
on the movement of a greater number of body segments. For more
complex postural orientation and movement classifications, this
can generate results of superior accuracy [2]. However, reducing
the number of activity monitors would increase the user-
friendliness of such This could i participation
willingness in activity assessments and reduce the possibility of
user error 3] as instr would be simpl

In addition, patients may find some activity monitor placements
to be uncomfortable which could further hinder patient compli-
ance [5]. Optimal activity monitor placement and the number of
activity monitors required depend greatly on the research question
[7]. For whole body movement, locations on the waist, sternum
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and lower back have been shown to be optimal, whereas thigh and
ankle locations have been used to measure leg movement [8}. For
more complex movement classification systems, higher numbers
of activity monitors (up to 36) have been uscd [9,10]. Many dif-
ferent studies have d: ori ion and move-
ment identification using varying " numbers of activity monitors
(from 1 to 7) and different locations [6,11-24). However, only a
few studies have investigated how the robustness of any of these
postural and movement ldentlﬁcauon algorithms would change
with different activity bers and locations {5,25,26]).
Studies using one activity itor for p
identification utilize simplified protocols and whether or not the
algorithms would perform as accurately for protocols involving
fidgeting of the feet while sitting or standing has not been tested.
Recently, a posture and movement classification algorithm was
developed by the authors, which is capable of accurately identify-
ing standing, sitting, and lying postures as well as walking,
jogging, and transitional movement using two tri-axial accelerom-
eters (one on the waist and onc on the thigh) [27]. The study
included a range of gait velocities from 0.1m/s to 4.8m/s and
fidgeting of the legs while sitting and standing. An accurate pos-
ture a.nd movement classification algorithm using either one or
two sina of different locations would allow
for user preferences of wear location and accelerometer numbers
to be taken into consideration while providing a safeguard against
missing data such as from malfunctioning devices.

The aim of this study were to determine and compare the valid-
ity of different 1 (1) pl and (2) combi
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Table 1 Mean signal magnitude area and ding walk-
Ingflidgeting and jogging thresholds for different monitor
locations

investigated in this study as it would not enable the separation of
sitting and standing postures or the identification of sit to stand
and stand to sit transitions. Tt , this accel combi-
nation would provide no additional information on postural and
movement detection compared to using either the waist or ankle
accelerometers alone apart from separating lying and sitting with
legs straight, i.e., sitting up while in bed.

2.3 Signal Processing. All post processing and analysis of

Ankle Thigh Waste
Variables monitor monitor monitor
Mean SMA for 5min protocol (g) 0.584 0.355 0.296
Walking/Fidgeting threshold (g) 0.246 0.175 0.135
Jogging threshold (g) 1.46 1.04 0.8
for a previously developed p and dynamic movement identi-

fication algorithm [27]. Three static postures and four dynamic
tasks were recorded. The validity of the posture and dynamic
movement identification algorithm for different accelerometer
locations and binations was evaluated in a simulated free-
living environment by comparison to video recordings.

2 Methods

2.1 Experimental Design. The data used in this study was
collected in a previous study [27] and reanalyzed for this study.
Accelerometer and video data were acquired from 12 3M, 9 F)
healthy adults as they performed an approximately S min protocol
of static postures and dynamic movements involving standing, sit-
ting, lying, walking, stair climbing and jogging in the laboratory
[27]. Additionally, subjects were asked to make small movements
of their body to simulate changing body position or fidgeting dur-
ing selected sitting and ding tasks [27). All activities were per-
formed at self-selected speeds. At the time of evaluation, the
median (range) age and average (SD) body mass index (BMI) of
the subjects were 31 (25-55) years, and 24.7+5.5kgm ™2,
respectively. Exclusion criteria were a history of musculoskeletat
deficits, neurological impairment or lower extremity surgery. The
study protocol was approved by the Mayo Clinic Institutional
Review Board and each subject provided written informed
consent before participating.

22 Data Collection, Accel data were captured from
each subject using custom built activity monitors developed at the
Mayo Clinic [27]. Each activity monitor incorporated a tri-axial
MEMS accelerometer (analog, *16g, Analog Devices), micro-
controller (12bit ADC, Texas Instruments), power source
(Tadiran battery, semiconductor voltage regulator), and onboard
data storage (NAND flash memory, 4 Gbit memory chip, Micron).
Monitors weighed 22 gs with dimensions of 4.7cm x 2.8cm

accel data were performed offline using MaTLAB (Version
7.11.0, Mathworks, Natick, MA, USA). The raw accelerometer
data were calibrated and a median filter, with a window size of
three, was applied to each of the orthogonal raw calibrated accel-
eration signals to remove any high-frequency noise spikes [15].
The resulting filtered signal was separated into its gravitational
component by using a third-order zero phase lag elliptical low
pass filter, with a cut-off frequency of 0.25 Hz, 0.01 dB passband
ripple and —100 dB stopband ripple. Subtracting the gravitational
component from the original median filtered signal provided the
bodily motion component [15].

24 Movement Detection. Dynamic movement was detected
by calculating when the signal magnitude area (SMA) of the bod-
ily motion comp of the 1 data ded the
dynamic movement threshold (Table 1) for each 1 s interval [27].
In order to allow the identification of movement at lower
frequencies (i.e., walking at gait velocities less than approxi-
mately 0.5m/s) which are often missed when looking at SMA
alone, a continuous wavelet transform (CWT) using a Daubechies
4 Mother Wavelet was applied to the acceleration signal over the
frequency range of 0.1-2.0 Hz (28] for those seconds of data iden-
titied as nonmovement using SMA. The energy contribution for
each data point was calculated from the coefficients returned from
the CWT using a scalogr If the ge energy contributi
for a 1s interval exceeds 1.5, that 1s interval is classified as
dynamic movement. The value of 1.5 was determined based on
observations made on a single random subject (as it gave the

of d d ds of mo with video-
observed seconds of movement at slow gait velocmcs) pnor to
complete testing on the The

from MATLAB was used to calculate the wavelet transforms in this
study. Movement was characterized as jogging when the SMA
exceeded the jogging threshold (Table 1) and as walking (includ-
ing stair climbing and fidgeting of the feet while standing) when
the SMA was between the threshold for dynamic movement and
jogging. The threshold of 0.135g for dynamic movement detec-
tion from waist accelerations was obtained from Ref. [29] and the

X 1.2cm. Prior to data collection, all four 1 s were
calibrated to record +1g, 0g and —1 g when placed in orth 1

hreshold of 0.8g for jogging detection for waist accelerations

orientations.

Subjects wore four activity monitors on the waist at the mid-
point of the ASIS, on the lateral midpoint of the right thigh and
bilateral ankles above the lateral malleoli. Activity itors were
secured with straps and were programmed to sample each axis at
100 Hz. Video data were simultaneously acquired using a hand-
held camera which collected data at 60Hz. Video data were

hronized to the lerometer data by asking all subjects to
perform three vertical jumps prior to and following the described
protocol. The four accelerometers were also synchronized to cach
other based on the onset of jumping. The onset of jumping was set
as time zero for both video and accelerometer data. The time point
for the onset of jumping was selected visually by a rater from the
video data and ly from the accell data based on the
onset of change in vertical acceleration of all the momtors Three
accelerometer placcments and one
were analyzed in this study: (1) single waist, (2) single thigh, (3)
single ankle, and (4) thigh and ankle (right side only) lerome-

was obtained from Ref. [27]. The thresholds for detecting
dynamic movement and jogging from acceleration data recorded
from the thigh and ankle were calculated as ratios of the waist
acceleration thresholds (Eq. (1)) as both thigh and ankle accelera-
tions were consistently larger than waist accelerations during
movement (Fig. 1). These ratios were determined from the mean
of the signal magnitude area (SMA) from each monitor

location from the 5 min simulated free-living p 1 for all sub-
jects (Table 1).
mean(SMAmonﬁm lnumm)
= — \° - monitor location 7 .
thmonitor location mean(SMA. ) thenis (V)]

where Yimonitor location 18 the threshold for either movement or jog-
ging at a specified accel i.e., thigh or ankle.

2.5 Postural Orientation. When using a single waist or ankle
ymeter, lying down was determined when the waist or

ters. These configurations were compared to the previously ana-
lyzed and validated waist and thigh accelerometer combination
[27]. The combination of the waist and ankle monitors was not
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ankle angle was between 50 and 130 deg, with undefined orienta-
tions for waist or ankle angles greater than 130deg and upright
postures between 0 and 50deg (Fig. 2(a)) [30]. When using only
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the thigh accelerometer, standing and sitting/lying were differenti-
ated based on the thigh angle, in relation to gravity, of less than
45 deg or greater than 45 deg, respectively [30] (Fig. 2(5)). To dif-
ferentiate lying conditions between supine, prone, left and right
positions, the angles in transverse plane were portioned into four
equal 90 degree segments [15]. When using both the thigh accel-
erometer with the ankle 1 the ankle lerometer

levels in this study: less than 60%, between 60% and 80%, and
>80% [27]. Comparably, 70-80% is defined as acceptable levels
for sensitivity and specificity for developmental screening tools
by the American Academy of Pediatrics. In [33], a sensitivity of
71.7% and a specificity of 67.8% were deemed to be acceptable
for detecnng sitting postures in healthy children. In Ref. [12], a

ion error of approxi ly 11% was considered as

was used to detect movement and to determine if the posture was
upright or lying down while the thigh accelerometer was used to
determine if upright postures were standing or sitting (Fig. 2(c)).
Rolling over while lying down was classified as a transition, spe-
cifically a lying to lying transition. To identify sit to stand, stand
to sit, lying to upright and upright to lying transitions, all begin-
ning and endmg segmenls of lying and sitting were identified.
When a p was di d 2 s prior to and 2s after the
begmmng and endmg points, respectively, transitions (of either
upright to lying, lying to upright, sit to stand, or stand to sit
depending on the identified postures) were classified as the active
seconds for postural change. Among upright movement, sitting
while fidgeting was identified by the thigh angle.

2.6 Validity. Video data were imported into Windows Movie
Maker (Microsoft, Seattle, WA). Two raters, each with greater
than one year of gait analysis experience, manually determined
start and end times of each postural orientation and movement.
The video data were considered the gold dard for all valida-
tion analysis. Video classification and accelerometer data were
organized into one second windows for a second-by-second com-
parison. In this study, we are using the term validity to mean the
“agreement between two efforts to measure the same thing with
different methods™ with one of those methods being the gold
standard [31]. Validity of the accelerometer algorithm to properly
identify different postures and movement was assessed with sensi-
tivity and positive predictive value (PPV). Specificity was not
used as the number of true negatives would depend largely on the
time duration of the protocol (as more time was spent not per-
forming each task than performing each task during the protocol)

acceptable for most clini ] . The {1 y of
a single accelerometer or an accelerometer combination, in the
present study, was determined to be acceptable at detecting a spe-
cific posture or movement if both sensitivity and PPV were greater
than 60%. Acceptable accuracy was further classed as either
‘moderate’ or “high” with the criteria for high accuracy being that
both sensitivity and PPV are >80%. The Bland-Altman method
was utilized to compare the total time spent in upright movement
as determined by both the algorithm and video observation [34).

3 Resuits

All twelve particip leted p 1 as prescribed.
For one individual, lhe waist accelemmeter came loose during the
laymg down il and therefore all sub analyses dur-

ing the protocol for this subject were not utilized for any acceler-
ometer combinations or placements. The total time to complete
the protocol averaged 359 *+ 42s. Reliability of video observation
between the two raters was high for all postures and activities
(ICC(A,1) > 0.92) except for transitions (ICC(A,1) of 0.47) [27].
All further analyses were performed comparing accelerometer
identification to a single rater.

3.1 Standing. Thigh-ankle and single thigh accelerometers
identified standing with moderate accuracy (median sensitivities
and PPVs > 75%; Tables 2 and 3, and Figs. 3 and 4).

3.2 Standing/Sitting. The single waist identified standing/sit~
ting with moderate accuracy (median sensitivity and PPV >71%;
Table 2, Figs. 3 and 4). However, the single ankle demonstrated

ble accuracy with only 53% in median sensitivity.

and specificity would; therefore, not provide a val
in regards to accuracy in this study. Sensitivity described the per-
centage of an observation category which was correctly detected
by the activity monitors, or the ratio of true positives to the sum
of true positives and false negatives. PPV provided the percentage
of true positives that was identified when compared to the total
number of true positives and false positives determined by the ac-
tivity monitor. Misclassification error was also calculated as the
of disagr between the algomhm and the video
analysxs for detecting all movement and static postures of stand-
ing, sitting and lying across the total protocol time [12]. There are
no defined acceptable levels of sensitivity or PPV for posture and
movement detection. Similar to previously published guidelines
for x values [32], sensitivity, and PPV were divided into three
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3.3 Sitting. The thigh-ankie accelerometers identified sitting
with moderate accuracy (median sensitivity and PPV >69%;
Tables 2 and 3, Figs. 3 and 4).

3.4 Sitting/Lying. The single thigh accelerometer detected
sitting/lying with high accuracy (median sensitivity and
PPV > 84%: Tables 2 and 3, and Figs. 3(b) and 4(b)).

3.5 Lying. The single waist accelerometer identified lying
with high accuracy (median sensitivity and PPV>97%), while
thigh-ankle and single ankle 1

d
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Fig. 2 Declsion algorithm for the possible posture and movement classifications determined from the accelerom-
eter data when using (a) single waist or ankle, (b) a single !hlgh and (c) thigh and ankle accelerometers. SMA is

signal magnitude area and CWT is

moderate accuracy (median sensitivities and PPVs>67%;
Tables 2 and 3, and Figs. 3 and 4).

3.6 Transitions. Transitions between sitting and standing,
and lying to lying were identified for the thigh-ankle and single

051003-4 / Vol. 136, MAY 2014
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thigh accelerometers with moderate accuracy (sensitivities and
PPVs>77% Tables 2 and 3, and Figs. 3 and 4). Transitions
were d with unaccep y with di

sensitivity < 47% for single waist and single ankle accelerometers
as only transitions between upright and lying, and lying to lying
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Table 2 Medlan sensitivity and PPV and overall misclassifica-
tion error (SD) for different monitor locations. Bold indicates
highest value in each row (lowest for misclasslification error),
red Indicates poor accuracy (< 60% [32]). The Walst and Thigh
column data is taken from [27] for comparison

Table 3 Static orlentation and movement identification accu-
racy levels based on sensitivity and PPV for varying accelerom-
eter locations. White: unacceptable, light grey: moderate, dark
grey: high.

Accuracy: Waist-thigh  Thigh-ankle Waist Thigh Ankle
Waist Thigh
Sensitivity (%) andthigh andankle Waist Thigh Ankle Standing A B A
Sitting

Standing 86 75 79° 75 53  Lying
Sitting 97 43 98" Walking/Fidgeting
Lying 98 98 98 98 Jogging
Walking/Fidgeting 87 % 91 94 95  Transitions c A B A
Jogging 97 % 97 99 93
Transitions 87 81 46 81 43 Note: A:A standing cannot be separated from sitting; B: lying cannot be
PPV (%) separated from sitting; and C: transitions between sitting with legs straight
Standing 75 87 n 87 n cannot be separated from lying.
Sitting 69 54 84°
Lying 97 69 97 67
Walking/Fidgeting 95 93 76 93 79
Jogging 100 99 100 99 98 accelerometers can easily be attached to belts. However, for sub-
Transitions 7 77 86" 77" 82°  jects who spend most of their time in bed or do not wear a belt or
Misclassification 112) 173 120 102° 16(3)" trousers, the waist placement may be uncomfortable [5]. Further-
Error (%) more, missing acceleration data due to failed devices and subject

- pli issues often cause problems with data analysis [35].
‘f{myﬂingcarmmbesepamgdfm;nﬁng. Theref ducing the ber of 3 quired for
,rxgzmﬁezs;"nm:ig;x:’::g' traight cannot be d from  @nalysis and using algorithms which are robust to a variety of ac-

lying.

transitions could be detected, not sit to stand or stand to sit. Sensi-
tivity values were higher for the single thigh accelerometer as

may i patient compliance and also

provide alternative analysis options. It is important to note that

while it is important for patient compliance that the number of

accelerometers is kept low, redundant accelerometers should be
used whenever possible in case of device failure or corrupt data,

Misclassifi occurred with all accelerometer combina-

only sit to lie and lie to sit transitions could not be d d. Sit to
lie and lie to sit transitions also could not be detected using the
thigh-ankle accelerometers as only transitions between sitting on
a bed with legs straight and lying down were investigated.

3.7 Walking/Fidgeting, Among dynamic orientations, walk-
ingffidgeting was identified with high accuracy (median sensitiv-
ities and PPVs>87%) for the thigh-ankle and single thigh
accelerometers (Tables 2 and 3, and Figs. 3 and 4). Single waist
and ankle accelerometers demonstrated moderate accuracy (me-
dian sensitivities and PPVs > 91% and 76%, respectively).

3.8 Jogging. Jogging was identified with high accuracy (me-
dian sensitivities and PPVs>93%) for all combinations and
placements tested (Tables 2 and 3, and Figs. 3 and 4).

The amount of time spent moving while upright demonstrated
good agreement, when utilizing the Bland-Altman method to
compare the accelerometer combinations and placements to video
observation (Fig. 5). The single thigh accelerometer and thigh-
ankle accelerometers showed approximately 1% of mean error in
identifying how many seconds dynamic movement occurred
across all subjects (Figs. 5(b) and 5(d)) while the single waist ac-
celerometer showed 12% (Fig. 5(a)). The ankle showed the worst
agreement with 17% (Fig. 5(c)). Overall misclassification error
between movement and static postures of standing, sitting and
lying were less than 17% in all cases (Table 2).

4 Discussion

The aim of this study was to test and compare movement and
posture classification schemes using different accelerometer com-
binations and pl Reducing the ber of acceler

quired for p | and mo in free-living
environments and care scttings is of high importance for patient

pli [5,6]). Requesting the user to don too many devices
can be cumbersome and lead to overly complicated wear instruc-
tions [S). In addition, patients may find some accelerometer place-
ments to be uncomfortable which could further hinder patient
compliance. The waist is often the preferred location as
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tions and placements to some degree.

4.1 Standing. When the single thigh accelerometer or the
thigh-ankle accelerometers were used, false negatives were caused
by misclassification of standing as walking/fidgeting when stand-
ing still occurs b activity of fidgeting while
standing (Table 2, and Figs. 3(b) and 3(d)).

42 Standing/Sitting. When the single ankle accelerometer
was used, a large number of false negatives (Table 2, Fig. 3(c))
resulted from subjects sitting with legs straight (i.c., on the floor
or on a bed). When the single ankle accelerometer was used, false
positives were due to parts of sit to stand and stand to sit transi-
tions being misclassified as static sitting/standing when the ankle
acceleration was too low to be detected as movement. When the
single waist accelerometer was used, false positives were due to
fidgeting of the feet while standing and sitting being misclassified
as static standing/sitting when there was very little waist move-
ment. These findings are consistent with previous studies, showing
that the waist location is optimal for detecting whole body move-
ment, while the ankle or thigh are optimal for detecting limb
movement [8].

4.3 Sitting. When the thigh-ankle accelerometers were used,
a large number of false negatives (Table 2, Fig. 3(d)) resulted
from subjects sitting with legs straight (i.e., on the floor or on a
bed). When the thigh-ankle accclerometers were used, false posi-
tives were caused by the misclassification of sitting while fidget-
ing as static sitting (Table 2, Fig. 4).

4.4. Sitting/Lying, When the thigh accelerometer was used,
falsc positives (Table 2, Fig. 4(5)) were due to the start and end of
lying transitions being misclassified as static sitting/lying.

4.5 Lying. When the single ankle accelerometer and the
thigh-ankle accelerometers were used, a large number of false
positives (Table 2, Figs. 4(c) and 4(d)) resulted from subjects
sitting with legs straight (i.c., on the floor or on a bed).

MAY 2014, Vol. 136 / 051003-5
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in (a), the median value and the 75" percentile are equal to 100%.

4.6 Transitions., A thigh accelerometer was needed for accu-
rate sit to stand transition detection, and a thigh accelerometer in
combination with a waist accelerometer was needed for accurate
postural detection, consistent with previous studies [2,14,36].
When the single waist and single ankle accelerometers were used,
false negatives occurred mostly due to transitions between sitting
and standing being misclassified as walking/fidgeting, as sitting
could not be separated from standing.

051003-6 / Vol. 136, MAY 2014
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In this study, the thigh-ankle accelerometers were found to
detect postures less accurately than the waist-thigh accelerometers
in Ref. [27], however, the results were still comparable to those
from other studies involving two accelerometer locations [12] and
could still provide beneficial information in the event of waist ac-
celerometer failure or if it is not feasible for a patient to wear a
waist accelerometer. While some studies have investigated pos-
ture identification using only one accelerometer on the waist
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values are also presented.

[15,17] or lower back [16), the protocols used to test the algo-
rithms validities did not include fidgeting of the feet during stand-
ing or sitting postures which could possibly reduce the accuracy.
Furthermore, difficulties in differentiating between standing and
sitting using an accelerometer located on the waist have been
reported [8). Studies involving ActivPal placed on the thigh report
combined results for sitting and lying [14,37]. In this study, the
single waist accelerometer identified upright and lying postures
with greater accuracy than the single ankle accelerometer.

4.7 Walking/Fidgeting. In this study, the thigh accelerometer
identified walking/fidgeting with the most accuracy for single ac-
celerometer use, while the waist accelerometer produced the least
accuracy due to missed fidgeting steps. Another study reported
that the ankle accelerometer demonstrated the most accurate
results for walking detection with single accelerometer use
between waist, thigh, and ankle location [25). However, in this
study, as sitting orientations were included in the protocol, and sit-
ting and standing could not be separated using single waist and
single ankle accelerometers, false positives occurred when fidget-
ing of the feet while sitting was misclassified by the algorithm as
walking.

48 Jogging. The thigh accelerometer also identified jogging
with the most accuracy for single accelerometer use, consistent
with Ref. [5]. Median sensitivities and PPVs for jogging were
slightly lower at 93% and 98% for the single ankle accelerometer
than the other combinations and pl due to the correlation
of increasing amplitude variation with increasing movement
resulting in some jogging seconds being misclassified as walking
and vice versa. However, despite some accelerometer locations
producing more accurate results than others, all tested accelerom-
eter combinations and placements in this study detected walking/
fidgeting with moderate to high accuracy (median sensitivities
and PPVs from 76% to 95%) and jogging with high accuracy (me-
dian sensitivities and PPVs from 93% to 100%: (Table 3)) which
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were ble to other studies [12,16]. While both thigh-ankle
and waist-thigh accelerometers produced results of high accuracy
for walking and jogging detection, the thigh-ankle accelerometers
had higher sensitivity values than the waist-thigh accelerometers
and only slightly lower PPVs (Table 2) consistent with a previous
study on level walking, stair ascent, and descent detection [25].
The single thigh accelerometer and thigh-ankle accelerometers
identified upright movement with the most agreement using
Bland-Altman (Fig. 5). The misclassification emors for detecting
postures and movement using the waist-thigh, single waist, and
single thigh accelerometers were similar to Ref. [12] which
reported a misclassification error of 11% and involved a much
simpler protocol with no fidgeting of the feet or jogging. The
higher misclassification errors for the single ankle and thigh-ankle
accelerometers were due to errors in identifying between upnght
and lying postures. The single thigh 1

the lowest misclassification error for single monitor use. Without
fidgeting of the feet, the misclassification errors (SD) were 4%
(1%). 7% (2%), and 6% (2%), 11% (1%), and 15% (3%) for the
waist-thigh, single waist, single thigh, thigh-ankle, and single
ankle accelerometers, respectively.

There are a number of limitations in this study which are impor-
tant to consider. The disadvantage of using only one accelerome-
ter is that in the case of device failure or corrupt data, there is no
source of redundant data that can be used instead. Movement and
jogging thresholds could possibly be refined in accuracy with a
higher number of subjects. It is important to note that only healthy
subjects were included in this study. Further investigation would
be needed before using the method examined in this study on
unhealthy subjects as changes in accelerometer orientations duc to
body shape, skeletal deformities, and skin movement artifacts
could result in posture and movement classification errors. How-
ever, the healthy subjects tested in this study had a range of body
types with a BMI range of 19.940.1kg/m’. Furthermore, the
algorithm was originally designed for use with waist and thigh
accelerometers and therefore the resuits may be biased towards
the waist-thigh accelerometers. However, while the waist-thigh
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accelerometers pmduwd the most accurate results overall, all
ace inations and plac d d jogging and
walking/fidgeting with sufticient accuracy. For single accelerome-
ter use, thigh accelerometer placement demonstrated optimal
results as it can most ly identify ding postures and
movement and can detect transitions from sitting/lying to
standing.

5 Conclusion

The results from this study show that there is a trade-off
between red the per subject,
choosing their locations and accuracy. The data suggests that
researchers should carefully choose accelerometer numbers and
their locations depending on the information required while con-
sidering pancnt preferences. For posture-related tasks we recom-
mend using a waist and thigh lerometer cc ion. For
redundancy, an extra thigh accelerometer should be added.
For eddynamic tasks, we recommend using a thigh accelerometer.
For redundancy, an ankle accelerometer should be added. While
this study involves a simulated protocol conducted in a laboratory
environment, the results suggest that the proposed analysis meth-
ods are suitable for p and classification in healthy
adults in a free-living environment.

of acceler
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