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Abstract
Multiple sensors are often considered necessary for increased step count 
accuracy. However, subject adherence to device-wear increases using a 
minimal number of activity monitors (AMs). The study aims were to determine 
and compare the validity of using multiple AMs versus a single AM to detect 
steps by comparison to video using a modification of an algorithm previously 
developed for a four-accelerometer AM system capable, unlike other 
algorithms, of accurate step detection for gait velocities as low as 0.1 m s−1.  
Twelve healthy adults wore ankle, thigh and waist AMs while performing 
walking/jogging trials at gait velocities from 0.1–4.8 m s−1 and a simulated 
free-living dynamic activities protocol. Nineteen older adults wore ankle and 
waist AMs while walking at velocities from 0.5–2.0 m s−1. As little as one AM 
(thigh or waist) accurately detected steps for velocities  >0.5 m s−1. A single 
ankle AM accurately detected steps for velocities  ⩾0.1 m s−1. Only the thigh 
AM could not accurately detect steps during the dynamic activities. Only the 
thigh–ankle combination or single waist AM could accurately distinguish 
between walking and jogging steps. These laboratory-based results suggest 
that the presented algorithm can accurately detect steps in a free-living 
environment using only one ankle or waist AM.

Keywords: accelerometer, movement analysis, step detection, body-worn 
sensors, sensor location
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1. Introduction

Maintaining physical activity (PA) is critical for health and function. Step counting using por-
table sensors is one of the most widespread methods used to quantitatively measure PA. It is 
often considered necessary to use multiple sensors for increased step count accuracy, particu-
larly when using these sensors as a rehabilitation tool, a clinical outcome measure after surgery, 
or for critically-ill patients. However, reducing the number of devices required for free-living 
assessments is of high importance for subject adherence to wearing the devices (Trost et al 
2005, Atallah et al 2011). Wearing multiple devices can be cumbersome. Furthermore, indi-
vidual subjects or patients may have different location preferences for sensor placement and 
may find some locations uncomfortable (Rodriguez-Martin et al 2013). Reducing the number 
of sensors that each subject is required to wear and reducing the location dependency of the 
sensors could increase willingness to participate in rehabilitation programs and studies. A 
previous study reported 84% adherence with adults age 60 years and over and just 60%–62% 
adherence for subjects of ages 12 to 39 years in a study involving a hip-located ActiGraph 
worn for four days (Troiano et al 2008), which offers room for improvement. In addition to 
adherence issues, many studies have reported reduced accuracy of many step counting devices 
at lower gait velocities (Le Masurier and Tudor-Locke 2003, Ichinoseki-Sekine et al 2006, 
Ryan et al 2006, Dijkstra et al 2008, Greene et al 2010). Individuals with reduced physical 
or cognitive function, who present greater issues with adherence, often walk at slower gait 
velocities. The need for adherence and accurate activity monitoring for these populations is of 
critical importance as they are at a higher risk for morbidity and mortality (Hardy et al 2007).

Many studies have developed step detection algorithms based on specific activity moni-
tor (AM) locations but do not test how algorithm performance would differ if locations were 
changed. The most common AM placement location in step count studies is on the ankle or 
thigh (Crouter et al 2003, Foster et al 2005, Ryan et al 2006, Aminian and Hinckson 2012), 
while the chest, waist or thigh are more common for movement classification, i.e. postures 
and activities (Mathie et al 2004). For step detection, AMs or pedometers located on the waist  
(Le Masurier and Tudor-Locke 2003, Esliger et al 2007, Yang et al 2011), lower back (Dijkstra 
et al 2008), trunk (Zijlstra and Hof 2003) and wrist (Fortune et al 2014a) have also been 
investigated. More accurate estimations might be expected for algorithms designed specifi-
cally for particular sensor locations. However, while these algorithms are available they have 
either not been tested for or do not work for low gait velocities. Furthermore, the use of mul-
tiple different algorithms for different individuals in the same study with different wear-site 
preferences could compromise the internal validity of some research studies. The accuracy 
of ActiGraph’s GT3X+  activity monitor combined with their new low frequency extension 
(LFE) algorithm has been investigated with wear-site comparison in a number of studies with 
the highest accuracy being reported for waist and ankle locations (Korpan et al 2015, Tudor-
Locke et al 2015). However the testing protocols used in these studies are not comparable to 
free-living and studies based in the free-living environment have reported over-estimations 
of step counts (Barreira et al 2013, Cain et al 2013, Feito et al 2015). The StepWatch activ-
ity monitor (SAM), which is worn on the ankle, has been shown to detect steps with high 
accuracy at speeds as low as 0.27 m s−1 and for shuffling gait (Schmidt et al 2011, Sandroff 
et al 2014). It has also been shown to have superior accuracy to the most accurate waist- 
and ankle-worn pedometers and ActiGraph (worn at the waist) (Macko et al 2002, Karabulut  
et al 2005, Bergman et al 2008, Feito et al 2012b, Sandroff et al 2014). Although it has only 
been validated in laboratory settings, it is often used as a criterion measure in the free-living 
environment (Feito et al 2012a, 2015). However, the sensitivity and cadence settings of SAM 
are not adaptive. This lack of adaptivity means that the settings need to be calibrated per 
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individual and may result in an overestimation of step counts in the free-living environment 
(Bassett and John 2010). We previously developed a step detection algorithm with adaptive 
thresholds using an AM system consisting of four accelerometers (waist, right thigh, and bilat-
eral ankles) and demonstrated that, unlike other algorithms or devices used in other studies 
(Le Masurier and Tudor-Locke 2003, Ichinoseki-Sekine et al 2006, Ryan et al 2006, Dijkstra 
et al 2008, Greene et al 2010), it performs with acceptable accuracy at slow gait velocities, 
even as low as 0.1 m s−1, in addition to normal and fast walking speeds, and under simulated 
free-living conditions without requiring calibration (Fortune et al 2014a). However, an algo-
rithm which can perform accurately at a number of locations using a minimal number of AMs 
would be beneficial in cases where subject adherence may be an issue. In addition, the differ-
ence in step detection accuracy using a multi-AM system compared to a single AM has not 
yet been investigated.

The study aims were to determine and compare the validity of using multiple AMs versus 
a single AM to count steps for both young to middle-aged adults and older adults. The algo-
rithm’s validity to detect steps was evaluated by comparison to video recordings. The algo-
rithm used in this study is built on previous work and data by our research group on postural 
and activity detection (Lugade et al 2014, Fortune et al 2014b), and step count (Fortune et al 
2014a) and is additionally validated for an older adult population.

2. Methods

2.1. Experimental design

Data from young to middle-aged subjects, who participated in previously performed posture, 
movement and step detection validation experiments, were used (Lugade et al 2014, Fortune 
et al 2014a). In addition, data from older adult subjects, who had not participated in our 
previous AM calibration studies, were used. Exclusion criteria for the young to middle-aged 
subjects were a history of musculoskeletal deficits, neurological impairment, or lower extrem-
ity surgery. Accelerometer and video data were acquired from 12 healthy adults (three males,  
nine females; median (range) age: 31 (25–55) years; mean (SD) body mass index (BMI): 
24.7 (5.5) kg m−2) as they performed seven to 10 walking/jogging trials in a straight line 
over an 8.5 m walkway (with additional room to accelerate and decelerate). For the initial 
trial, subjects were asked to walk at a self-selected normal gait velocity. Following each trial, 
subjects were given instructions to walk/jog at a slower/faster speed, until a suitable range 
of gait velocities (calculated from photocells placed at either walkway end) was obtained. 
Accelerometer and video data were also acquired as subjects performed an approximately 
5 min protocol of static and dynamic activities involving standing, sitting, lying, walking, stair 
climbing, and jogging in the laboratory. Additionally, subjects were asked to fidget to simu-
late activity during selected sitting and standing tasks. All activities were performed at self-
selected speeds. To further evaluate algorithm robustness, accelerometer and video data were 
acquired from 19 older adults (five males, 14 females; median (range) age: 80 (65–91) years; 
mean (SD) BMI: 25.5 (4.1) kg m−2) as they performed 10 to 40 walking trials at slow, normal 
or fast self-selected speeds in a straight line over the 8.5 m walkway. Older adult subjects were 
recruited from other ongoing active protocols for which the exclusion criteria were unable to 
walk at least one block without a walking aid, a history of musculoskeletal deficits, neurologi-
cal impairment, or bilateral hip replacement/surgery, or lower extremity joint replacement 1 
year prior. The protocols were approved by the Mayo Clinic Institutional Review Board and 
written informed consent was obtained before participation.
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2.2. Data collection

Accelerometer data were captured from the younger group subjects using custom-built 
Mayo Clinic AMs, each incorporating a tri-axial MEMS accelerometer (analog, ±16 g, 
Analog Devices) and onboard data storage of up to 0.5 GB, developed at the Mayo Clinic 
(Lugade et al 2014). Subjects in the younger group wore four AMs below the navel on the 
waist, on the lateral midpoint of the right thigh, and on the bilateral ankles. Accelerometer 
data were captured from the older group subjects using ActiGraph GT3X  +  (ActiGraph 
LLC, Fort Walton Beach, FL) AMs, which contains a tri-axial accelerometer with an accel-
eration range of  ±6 g, due to hardware issues which occurred after the data collections from 
the younger group. Older group subjects wore three AMs below the navel on the waist and 
on the bilateral ankles as some subjects in this group were not willing to wear an AM on the 
thigh. AMs were secured with straps and were programmed to sample each axis at 100 Hz.  
Video data were simultaneously acquired at 60 Hz using a handheld camera. Video data 
were synchronized with the accelerometer data by asking all subjects to perform three verti-
cal jumps before and following the protocol. The accelerometers-based devices were also 
synchronized with each other after the final jump. Six combinations were investigated for 
the younger group subjects: (1) waist and thigh, (2) thigh and ankle, (3) waist and ankle,  
(4) single waist, (5) single thigh, and (6) single ankle. In the older group, the following three 
combinations were investigated: (1) waist and ankle, (2) single waist, and (3) single ankle. 
These configurations were compared to the previously validated combination of waist, thigh 
and ankle AMs (Fortune et al 2014a).

2.3. Signal processing

All post processing and analysis of accelerometer data were performed offline using MATLAB 
(Version 7.11.0, Mathworks, Natick, MA, USA). The raw accelerometer data were calibrated 
and median filtered, with a window size of three, to remove any high-frequency noise spikes. 
The resulting filtered signal was separated into its gravitational component by using a third-
order zero phase lag elliptical low pass filter, with a cut-off frequency of 0.25 Hz, 0.01 dB 
passband ripple and  −100 dB stopband ripple. Subtracting the gravitational component from 
the original median filtered signal provided the bodily motion component (Karantonis et al 
2006).

2.4. Upright movement detection

In a study by our research group (Lugade et al 2014), upright dynamic activity was calculated 
using the waist and thigh AMs and classified as ‘walking/fidgeting’ or ‘jogging’. Dynamic 
activity was detected when the signal magnitude area (SMA) of the waist acceleration bodily 
motion component exceeded 0.135 g for epochs of 1 s. For the epochs classified as non-activ-
ity, a continuous wavelet transform using a Daubechies 4 Mother Wavelet was applied to 
the waist acceleration data. Data which was within a range of 0.1 to 2.0 Hz was additionally 
identified as activity if it exceeded a scaling threshold of 1.5 over each second. Upright activ-
ity was identified using the angles estimated from the waist and thigh accelerometers. Upright 
dynamic activity was classified as ‘walking/fidgeting’ when it was detected using the continu-
ous wavelet transform or the SMA was between 0.135 and 0.8 g and as ‘jogging’ when the 
SMA exceeded 0.8 g.

Another study by our research group describes how to detect movement and posture 
using different AM configurations: (1) single waist, (2) single thigh, (3) single ankle, and 
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(4) thigh and ankle AMs (Fortune et al 2014b). The SMA thresholds for detecting ‘walk-
ing/fidgeting’ or ‘jogging’ activity when using the thigh or ankle acceleration data were 
calculated as ratios of the waist acceleration data and are presented in (Fortune et al 2014b). 
When using the single waist or single ankle AMs, angle estimations were used to identify 
lying down postures from upright postures. When using the single thigh AM, angle estima-
tions were used to identify standing posture from sitting or lying down postures. When 
using the thigh and ankle AMs, the ankle acceleration data was used to detect and classify 
dynamic activity and upright activity was identified using the angles estimated from the 
thigh and ankle accelerometers.

In the current study, we will investigate step detection accuracy in these four AM configu-
rations and in two additional AM configurations: (1) waist and thigh, and (2) waist and ankle 
AMs. Dynamic activity and posture will be detected and classified using the waist and thigh 
AMs as described above. The waist acceleration data will be used to detect steps. As reported 
in figure 1(a), when using the waist and ankle AMs, dynamic activity will be detected and 
classified using the waist acceleration data and posture will be classified as either lying down 
or upright using angle estimations from the waist acceleration data. The ankle acceleration 
data in this configuration will be used only for step detection.

2.5. Step detection

We previously described a step detection algorithm which used a peak detection method with 
adaptive acceleration and timing thresholds to detect heel-strikes (Fortune et al 2014a) from 
the ankle anteroposterior acceleration signal segments which were classified as movement or 
jogging from the movement detection algorithm in (Lugade et al 2014). Figure 1(a) describes 
which AMs were used for posture, movement, and step detection in the six AM combinations 
tested. Timing thresholds (adaptive and non-adaptive) were scaled according to the AM loca-
tion (table 1, figure 1(b)). The adaptive timing threshold for walking steps when using the 
waist AM to detect movement is calculated from

t f 0.1/mean SMA1 s ( )= × (1)

where fs is the sampling frequency and SMA is the signal magnitude area of the waist (Fortune 
et al 2014a). When the right thigh or an ankle AM is used to calculate SMA and detect move-
ment, equation  (1) is multiplied by a corresponding scaling factor (table 1). These scaling 
factors were calculated based on the ratio of the mean SMA values during walking across the 
group for the right thigh or ankle AM to those from the waist AM. The minimum value allowed 
for t1 was set at 0.5 s and the non-adaptive timing threshold for jogging was set at 0.25 s for the 
ankle AM as defined in (Fortune et al 2014a). During walking, the stance phases from both 
the right and left legs could be captured from waist acceleration data. The anteroposterior 
acceleration values were considerably lower for the thigh compared to the ankle. As a result, 
heel-strike acceleration values were less prominent and toe-off points were also detected as 
steps. As approximately twice as many steps were calculated using thigh or waist acceleration 
data compared to ankle acceleration data, the corresponding timing thresholds were defined 
as half the values for ankle acceleration data. Therefore, the minimum value allowed for t1 
was set at 0.25 s for the thigh and waist AMs and the timing threshold for jogging was set at 
0.125 s for the thigh and waist AMs. The algorithm then checked for missing steps in each data 
segment by calculating the time difference between each successive detected heel-strike point 
(figure 1(c)). All time gap thresholds for identifying missing walking steps using the waist or 
right thigh AMs were defined to be half of the defined ankle AM value (table 1). All time gap 
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thresholds for identifying missing jogging steps using the waist, right thigh, or right or left 
ankle AMs were defined as equal. A maximum acceleration value was set at  −0.09 g for a heel 
strike to be considered as a valid step when using the ankle AM to detect steps to prevent very 
small movements of the feet from being falsely identified as steps. Final step counts detected 

Figure 1. Decision table  demonstrating (a) which AM (s) is to be used for posture 
and movement detection (see Fortune et al (2014a)) and step detection for each of the 
different AM combinations, and flowcharts demonstrating the step detection algorithm 
((b) heel-strike detection and (c) search for undetected heel-strike events) for each AM 
location.
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using an ankle AM were doubled to account for the other leg. Any segments with a total of 
less than four steps detected from the right and left ankles which were preceded and followed 
by more than 2 s of no activity were not considered as walking or jogging and their steps were 
categorized as ‘other’ (Fortune et al 2014a). This characterization was also applied to video 
observation.

2.6. Validity

Video data were imported into Windows Movie Maker (Microsoft, Seattle, WA). Two rat-
ers, each with greater than 1 year of gait analysis experience, manually determined the 
number of walking, jogging, and ‘other’ steps taken for each dynamic activity. Video data 
were considered as the gold standard for all validation analysis. Mean agreement, as defined 
in (Fortune et al 2014a), with video data across all walking and jogging trials was used 
to assess the accelerometer algorithm’s validity to detect steps for gait velocities ranging 
from 0.1 to 4.8 m s−1. For the simulated free-living dynamic activities protocol, algorithm 
step counts were validated against the manual step counts from video data. Sensitivity, 
positive predictive value (PPV), and agreement, as defined in (Fortune et al 2014a), were 
used to assess the accelerometers’ ability to accurately detect steps. Sensitivity, PPV and 
agreement of step counts were classed as ‘acceptable’ or ‘excellent’ if they were greater 
than or equal to 90% or 97%, respectively (Hatano 1993). Median values were presented 
since they may be more representative than mean values due to the small sample size. 
Mean values are also presented for comparison to the literature. Overall accuracy classifi-
cations of the different AM combinations were determined by both median sensitivity and 
PPV. If either of these values was termed as ‘unacceptable’ then that AM combination’s 
accuracy was deemed as unacceptable. AM combinations were only considered excellent 
if both median sensitivity and PPV were excellent. The Bland–Altman method was utilized 
to compare the total step counts as determined by the AM algorithm and video observation 
for the walking/jogging trials and the simulated free-living dynamic activities protocol 
(Bland and Altman 1999).

Table 1. Acceleration and timing thresholds for each monitor location.

Thresholds Ankle Thigh Waist

Maximum valid step acceleration (g) −0.09 — —
Time gap indicating missed steps (walking detected using 

SMA) (s)
2.5 1.25 1.25

Time gap indicating missed steps at either activity segment 
end (walking detected using SMA) (s)

2 1 1

Time gap indicating missed steps (walking detected using 
wavelet transform) (s)

8 4 4

Time gap indicating missed steps at either activity segment 
end (walking detected using wavelet transform) (s)

7.5 3.75 3.75

Time gap indicating missed steps (jogging) (s) 1.25 1.25 1.25
Time gap indicating missed steps at either activity segment 

end (jogging) (s)
1 1 1

Scaling factor to multiply adaptive timing threshold for 
walking by

1.825 1.298 1

Minimum value allowed for adaptive timing threshold 
(walking) (s)

0.5 0.25 0.25

Timing threshold for jogging (s) 0.25 0.125 0.125
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3. Results

Data from one younger subject were excluded from all analysis due to video data issues. 
As the inter-rater reliability of step detection using video observation was  >0.98 (Fortune 
et al 2014a), all analyses were performed comparing accelerometer identification to a single 
observer chosen at random.

The older group’s mean (SD) gait velocities ranged from 0.5 (0.02) to 1.1 (0.07) m s−1, 
0.7 (0.04) to 1.4 (0.12) m s−1, and 0.8 (0.02) to 1.7 (0.06) m s−1 for slow, normal and fast 
self-selected speeds. The algorithm demonstrated overall mean (SD) agreements of between 
88 (12)% and 92 (8)% with manual step counts as gait velocities ranged from 0.1 to 4.8 m s−1  
for the younger group (table 2, figure 2). Overall mean (SD) step count agreements of between 
96 (4)% and 98 (5)% were observed as gait velocities ranged from 0.5 to 2.0 m s−1 for the 
older group (table 2, figure 2). The algorithm mean agreements were ‘unacceptable’ for AM 
combinations not including an ankle AM when gait velocity was lower than 0.5 m s−1 which 
was due to significantly lower amplitude acceleration signals, compared to ankle AM place-
ment, reducing the sensitivity of peak detection. Steps taken ranged from 10 to 92 per trial, 
increasing as gait velocity decreased. At higher gait velocities, peak acceleration amplitudes 
increased in magnitude and decreased in variability, resulting in increased step detection 
accuracy. All other agreement values were either acceptable or within 1%–3% from accept-
able agreement. The mean number of missed steps was fewer than three steps for all six AM 

Table 2. Mean (SD) agreement of step counts using all monitor combinations and the 
original four AM system (Fortune et al 2014a) compared with visual step counts, mean 
number of steps per trial, and number of trials for different gait velocity ranges.

Gait velocity range (m 
s−1): <0.5 0.5–1.0 1.0–1.5 1.5–2.0 >2.0 0.1–4.8

Young adult group (n  =  11)
Waist (%) 80 (12) 93 (5)a 94 (7)a 92 (7)a 94 (6)a 90 (10)a

Thigh (%) 82 (14) 92 (12)a 94 (6)a 92 (11)a 89 (11) 89 (12)
Ankle (%) 90 (9)a 94 (9)a 92 (7)a 90 (9)a 93 (7)a 92 (8)a

Thigh and ankle (%) 87 (12) 88 (18) 89 (12) 89 (10) 92 (7)a 89 (12)
Waist and ankle (%) 88 (13) 91 (7)a 88 (8) 90 (7)a 90 (10)a 89 (10)
Waist and thigh (%) 79 (15) 92 (13)a 94 (4)a 89 (9) 91 (8)a 88 (12)
Waist and thigh and 
ankles (%)

95 (6)a 90 (6)a 89 (7) 89 (7) 92 (11)a 92 (8)a

Mean number of steps 
per trial

37 (18) 20 (2) 17 (1) 15 (2) 13 (2) 21 (13)

Number of trials 26 18 22 18 21 105
Older adult group (n  =  19)
Waist (%) — 98 (5)a 98 (6)a 99 (3)a — 98 (5)a

Ankle (%) — 96 (4)a 97 (4)a 95 (5)a — 96 (4)a

Waist and ankle (%) — 96 (3)a 97 (5)a 95 (4)a — 96 (4)a

Mean number of steps 
per trial

— 18 (3) 15 (2) 12 (1) — 16 (3)

Number of trials — 208 241 68 — 518

a Values in bold indicate agreement which is classified as ‘acceptable’ (⩾90% (Hatano  
et al 1993)).
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combinations in the younger group, with a mean number of 0.3 missed steps for the three AM 
combinations tested in the older group.

The sensitivity values were acceptable for all AM combinations in identifying walking steps 
except for the waist and thigh combination and the single thigh AM (figure 3(a)). The high 
numbers of false negatives when using the single thigh AM and the waist and thigh combina-
tion were due to the low amplitude of the anteroposterior signal resulting in some undetected 

Figure 2. Step count agreement with visual observations for each trial as gait velocity 
ranges from 0.1 to 4.8 m s−1 for six different monitor combinations: (a) single waist, 
(b) single thigh, (c) single ankle, (d) thigh and ankle, (e) waist and ankle, and (f) waist 
and thigh AMs. Each black asterisk denotes the step count agreement from one walking 
or jogging trial performed by a younger group subject. Each grey asterisk in (a), (c), 
and (e) denotes the step count agreement from one walking trial performed by an older 
group subject.
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Figure 3. Step detection sensitivity when identifying (a) walking steps, (b) jogging 
steps, and (c) the total number of steps, and positive predictive value (PPV) when 
identifying all (d) walking steps, (e) jogging steps, and (f) the total number of steps 
compared to video identification for all AM combinations for the simulated free-living 
dynamic activities protocol. The central line in each box represents the median, the 
edges of the box are the 25th and 75th percentiles, and the whiskers extend to 1.5 
times the interquartile range. Outliers beyond this range are labeled as  +. For the PPV 
of jogging using the waist, thigh and ankles combination, the median value is equal 
to 100%. For the PPV of jogging using the waist and thigh combination, the median 
value, the 25th and 75th percentiles are equal to 100%. The grey line in each graph 
marks 90% (the cut-off for determining accurate sensitivity and PPV values (Hatano 
1993)). (g) shows the accuracy rankings determined for each AM combination from the 
corresponding sensitivity and PPV (both greater than or equal to 90%).
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heel-strikes. The PPVs were acceptable for all AM combinations in identifying walking  
steps except for the waist and ankle combination, the single thigh, and the single ankle AMs 
(figure 3(d)). The sensitivity values were acceptable for all AM combinations in identifying 
jogging steps except for the waist and thigh combination, single thigh, and single ankle AMs 
(figure 3(b)). The PPVs were acceptable or excellent for all AM combinations in identifying 
jogging steps (figure 3(e)). The sensitivity values were acceptable for all AM combinations 
in identifying all steps except for the waist and thigh combination and the single thigh AMs  
(figure 3(c)). The PPVs were acceptable or excellent for all AM combinations in identifying 
all steps (figure 3(f)). For combinations involving a AM located at the ankle (single ankle, 
thigh and ankle combination, and waist and ankle combination), every segment with an odd 
number of steps taken would yield one false positive step as the number of heel-strikes calcu-
lated from one leg is doubled to estimate the step count. This resulted in some false positive 
step detection. The waist, thigh, and ankles combination, thigh and ankle combination, and 
single waist AM were classed as acceptable for identifying walking, jogging, and all steps 
(figure 3). The waist and thigh combination and the single ankle AM gave acceptably accurate 
results when detecting steps but not when identifying walking steps or jogging steps specifi-
cally. The waist and ankle combination was acceptably accurate in detecting steps and identi-
fying jogging but not walking steps, while the single thigh AM produced unacceptable results 
identifying walking, jogging, and all steps.

The mean error was less than 4% for the single waist AM, the thigh and ankle combination, 
and the waist and ankle combination (figures 4(a), (d) and (e)). The waist and thigh combina-
tion had the largest mean error out of all combinations, underestimating steps by a mean of 8% 
when using the Bland–Altman method (figure 4(f)). The thigh and ankle combination had the 
smallest 95% limits of agreement ranging from 2% to  −9% for step detection (figure 4(d)). 
The single thigh AM had the largest 95% limits of agreement ranging from 22% to  −33% 
(figure 4(b)). One outlier occurred with the single thigh AM, the single ankle AM, and the 
thigh and ankle combination (figures 4(b)–(d)). Two outliers occurred with the waist and ankle 
combination (figure 4(e)). While a single thigh AM produced the least accurate results for step 
detection (figure 4(b)), it yielded the most accurate results for detecting time spent walking 
and jogging as found in a parallel study by the authors using the same data recordings (Fortune 
et al 2014b). The mean overestimation of step counts of less than 3% using the single waist 
AM (figure 4(a)) was due to false positives steps at the ends of segments as the duration of 
upright movement detection was overestimated (Fortune et al 2014b).

4. Discussion

We have previously discussed the need for and lack of step detection algorithms which are 
capable of detecting steps at lower gait velocities (without performing in-laboratory calibra-
tion for each subject prior to use) in addition to normal and fast gait velocities (Fortune et al 
2014a). However, the algorithm which we previously developed to address this issue requires 
the use of four AMs which could affect subject adherence in some populations. Subject adher-
ence is one of the most important aspects to consider when investigating the use of wearable 
sensors to assess free-living PA. Reducing the AM number required for PA assessments in 
free-living environments and care settings is known to be very important for subject adherence 
(Hagstromer et al 2007, Matthews et al 2012), particularly with individuals suffering from 
physical or cognitive impairments (White et al 2004). As further evidence of subject adher-
ence issues related to both AM number and location, during recruitment for the present study’s 
older group, subjects agreed to participate only if the thigh AM was excluded. Therefore, the 
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study aims were to determine and compare the accuracy of a previously developed step detec-
tion algorithm with modifications while using multiple AMs versus a single AM.

Many studies have investigated the effect of AM placement on energy expenditure measure-
ments (Bouten et al 1997, Altini et al 2015), activity classification (Maurer et al 2006, Preece 
et al 2009, Atallah et al 2011), and posture detection (Gjoreski et al 2011). Some studies have 
examined the step count agreement of commercial pedometers attached to different locations 
(Silcott et al 2011, Fortune et al 2014a), or compared different devices which have different 

Figure 4. Bland–Altman plots demonstrating percentage accuracy for step detection 
during the simulated static and dynamic activities protocol when using accelerometer 
compared to video identifications for (a) the waist and thigh combination, (b) the ankle 
and thigh combination, (c) the waist and ankle combination, (d) the single waist, (e) the 
single thigh, and (f) the single ankle. The dashed line represents the average, while the 
solid lines represent the lower and upper 95% limits of agreement (+ or −1.96 SD).
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manufacturer recommended locations (Karabulut et al 2005, Storti et al 2008). ActiGraph is 
the only research-grade AM which uses a step detection algorithm based on just one device 
that can be worn on multiple locations (wrist, waist, thigh, or ankle). However, while high 
accuracy has been reported for waist and ankle-worn ActiGraphs with the LFE algorithm 
(Korpan et al 2015, Tudor-Locke et al 2015), overestimations with free-living environment-
use have been reported (Barreira et al 2013, Cain et al 2013, Feito et al 2015). To the best of 
our knowledge, there exists no non-proprietary step detection algorithm which can be used 
with acceleration data from only one device on either the trunk or proximal or distal lower 
body. Many step counters have been developed for use at the ankle or at the thigh (Crouter  
et al 2003, Foster et al 2005, Ryan et al 2006, Aminian and Hinckson 2012). While more 
accurate estimations might be expected for algorithms designed specifically for particular 
sensor locations, many of these algorithms have either not been tested for or do not work for 
low gait velocities. The ankle-worn SAM has demonstrated high step detection accuracy for 
speeds as low as 0.27 m s−1 (Sandroff et al 2014). However, the non-adaptive threshold set-
tings require individual calibrations per subject and may result in overestimations in the free-
living environment (Bassett and John 2010).

Similar to previous studies, longer duration trials in the current study demonstrated greater 
agreement as missed steps usually occur at activity segment ends (Dijkstra et al 2008). With 
longer duration tasks, greater accuracy can be achieved, as misclassification commonly occurs 
during the second at a task beginning or end. However, shorter duration activity segments at 
slower gait velocities are more representative of activity in a natural free-living environment, 
with sixty percent of all walk bouts lasting 30 s or less (Orendurff et al 2008). The higher step 
count agreement values observed in this study with the older group compared to the younger 
group may be due to the younger subjects being instructed to sometimes walk at speeds which 
were slower or faster than their natural self-selected speeds. This could lead to less natural 
gait acceleration signals and an increase in the gait acceleration pattern variability resulting in 
false negatives. In addition, the older subjects often did not follow instructions to remain still 
in between trials, which resulted in less missed activity and step detection at the trial ends.

The overall mean step agreements of all AM combinations (88%–99%) in the current study 
were similar or greater than the agreement of many devices tested in other studies (69%–99%) 
(Crouter et al 2003, Schneider et al 2003, 2004, Dijkstra et al 2008, Storti et al 2008, Sandroff 
et al 2014, Korpan et al 2015). A small number of studies have produced slightly higher agree-
ment values (99%–100%), however they involved activity segments which were isolated and 
much longer in length and within the range of healthy gait velocities (Foster et al 2005, Ryan 
et al 2006). In addition, many of these studies use more than one AM or do not incorporate 
posture detection. The agreement of the algorithm used in this study with video identification 
has also been observed to increase with longer duration activity segments (38 to 65 s) at healthy 
self-selected walking speeds using the AM system consisting of four accelerometers (waist, 
right thigh, and bilateral ankles) (Fortune et al 2014a). Previous studies demonstrated that the 
most accurate pedometers are accurate to within  ±3% (Hatano 1993). However, they do not 
take false negatives or false positives into account. As long as the number of false negatives is 
similar to the number of false positives, an agreement which appears highly accurate can be 
obtained. For this reason, we based our accuracy validation on sensitivities and PPVs for the 
simulated free-living dynamic activities protocol. Furthermore, these criteria were based on 
long, isolated segments of continuous activity and do not distinguish between walking, jog-
ging, or fidgeting steps (3 steps or less). Based on the agreement values from the walking/jog-
ging trials and the sensitivity, PPV, and Bland–Altman results from the protocol of simulated 
free-living dynamic activities, all AM combinations in the current study except for the single 
thigh AM would be capable of producing acceptably accurate results for step counts for gait 
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velocities greater than 0.5 m s−1. While the single thigh AM was considered to yield unac-
ceptable results, it would be classified as acceptable if agreement alone was used as a measure 
of accuracy. For acceptable accuracy for a gait velocity range including 0.1 to 0.5 m s−1,  
a single ankle AM or a combination of AMs including an ankle AM is needed when using the 
current study’s algorithm. However, if more information than the step count is needed (i.e. 
distinguishing walking from jogging steps) only the waist, thigh and ankles combination, 
thigh and ankle combination, and single waist AM could provide sufficient accuracy. While a 
single waist AM yielded slightly greater accuracy in the older group than a single ankle AM 
or waist and ankle AM combination due to the waist AM’s ability to capture the acceleration 
pattern of steps from both legs rather than just one leg, all three investigated AM combinations 
detected steps with greater than 96% agreement. A priori knowledge of the AM location(s) 
is needed for the current study. For commercial AMs, for which manufacturers recommend 
more than one wear-location, a priori knowledge is not needed. However, wear-location has 
been shown to cause large accuracy differences (Fortune et al 2014a, Korpan et al 2015). A 
limitation of this study is that the validation is performed on the same calibration sample of 
young to middle-aged subjects. However, high step detection accuracy was also obtained with 
the older adult subjects, none of whom had participated in our previous calibration studies.

The method used in this study has been shown to be robust enough for use on a wide 
range of gait velocities in healthy young-, middle-, and older-aged subjects with as little as 
one AM. Therefore, this methodology could potentially be applied to a wide range of subject 
populations in the free-living environment, which remains to be tested. The potential to use a 
minimal number of AMs for PA assessments for subjects with very slow gait velocities in the 
free-living environment could have important implications, contributing to subject adherence 
increases.

5. Conclusion

The data suggest that researchers should carefully choose AM numbers and their locations 
depending on the information required while considering subject or patient preferences. Only 
the thigh-ankle combination or single waist AM could accurately distinguish between walking 
and jogging steps. As the older subjects objected to thigh AM-wear and only the single thigh 
AM could not accurately detect steps during the performance of the dynamic activities by 
the younger subjects, this study demonstrates the potential value of only using a single waist 
or single ankle AM for the presented step detection algorithm. While this study involves a 
simulated protocol conducted in a laboratory environment, the results from this study suggest 
that a single waist AM can be used with the algorithm presented to accurately detect steps in a 
free living environment for gait velocities as low as 0.5 m s−1 and that a single ankle AM can 
accurately detect steps for gait velocities as low as 0.1 m s−1.
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