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a  b  s  t  r  a  c  t

A  robust  method  for  identifying  movement  in  the  free-living  environment  is  needed  to  objectively  mea-
sure  physical  activity.  The  purpose  of  this  study  was to  validate  the  identification  of  postural  orientation
and  movement  from  acceleration  data  against  visual  inspection  from  video  recordings.  Using  tri-axial
accelerometers  placed  on  the waist  and  thigh,  static  orientations  of  standing,  sitting,  and  lying down,
as  well  as  dynamic  movements  of  walking,  jogging  and  transitions  between  postures  were  identified.
Additionally,  subjects  walked  and  jogged  at self-selected  slow,  comfortable,  and  fast  speeds.  Identifi-
cation  of tasks  was  performed  using  a combination  of  the  signal  magnitude  area,  continuous  wavelet
transforms  and  accelerometer  orientations.  Twelve  healthy  adults  were studied  in  the  laboratory,  with
two  investigators  identifying  tasks  during  each  second  of video  observation.  The  intraclass  correlation
coefficients  for  inter-rater  reliability  were  greater  than  0.95  for all activities  except  for  transitions.  Results
demonstrated  high  validity,  with  sensitivity  and  positive  predictive  values  of  greater  than  85% for  sitting
and  lying,  with  walking  and  jogging  identified  at greater  than  90%.  The  greatest  disagreement  in  identi-
fication  accuracy  between  the algorithm  and  video  occurred  when  subjects  were  asked  to fidget  while
standing  or  sitting.  During  variable  speed  tasks,  gait  was  correctly  identified  for  speeds  between  0.1  m/s
and  4.8  m/s.  This  study  included  a range  of  walking  speeds  and  natural  movements  such  as  fidgeting
during  static  postures,  demonstrating  that  accelerometer  data can  be used  to  identify  orientation  and
movement  among  the general  population.

© 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Identifying human body position and movement in the free-
living environment can provide subject-specific data on activity
or disability as well as elucidate changes due to intervention or
rehabilitation among patients [1]. Accelerometer based activity
monitors provide objective measurements of patient function dur-
ing free-living [2,3], and have been used in a variety of populations
including healthy individuals, patients with Parkinson’s disease
[4], total hip arthroplasty [5], and osteoarthritis [6]. Central to the
clinical and research utility of activity monitors is the validity of
analysis methodologies, applied to the raw body accelerations, to
decipher static body postures and dynamic movement activities
during activities of daily living (ADLs). Further, for clinical efficacy,
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the validation procedures must go beyond controlled conditions
that test human movement which is considered “normal” and typ-
ical of healthy individuals. Slow walking is often characteristic of
disease and disability, and patients with a decreased walking speed
are at high risk for functional decline, morbidity, and mortality [7,8].
In addition to the inclusion of a wide range dynamic activity in vali-
dation procedures, it is important to include walking performed at
slow speeds for applicability of the analysis methodology to patient
populations.

Commercial devices such as the Intelligent Device for Energy
Expenditure and Activity (IDEEA) [9], DynaPort MoveMonitor [10],
and the activPAL [11] have demonstrated the ability to discrimi-
nate posture, though the description of methodologies are absent
or lacking, with detection algorithms based on third party black
box classification. Previous validation studies report highly accu-
rate results, though movements were performed in a controlled
environment measuring only a limited set of postures, neglecting
transitions between postures [9,12], and collecting over a narrow
range of walking speeds. Additionally, sensitivities of other pos-
tural algorithms often were reported based on the likelihood of a
posture or activity being detected [13–15], rather than second by
second analysis of the total collection duration. There have been
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Table 1
Tasks used for validation of acceleration classification.

Task Description Duration (s)

First protocol – static and dynamic tasks
Jumping Perform three consecutive standing jumps 5
Quiet  standing Subject stands on two feet 15
Quiet  sitting Subject sits down in a chair and remains seated 15
Walking Subject stands up and walks at a self-selected pace 30
Jogging Subject jogs at a self-selected pace 20
Stair  climbing Subject walks up and down a 7 step staircase 30
Walking Subject walks at a self-selected pace 20
Jogging Subject jogs at a self-selected pace 15
Lying  down Subject lies down supine, left, prone and right for 15 s each 60
Quiet  sitting Subject sits on the floor cross-legged or straight-legged 15
Standing Subject stands up and is asked to sway/shuffle feet slightly 15
Sitting Subject sits in a chair and fidgets legs and arms as if working at a desk 15

Second protocol – walking speeds
Walking Subject asked to walk across a 10 m walkway at self-selected slow,

comfortable, and fast walking speeds.
600

no previous validation studies that included a wide range of walk-
ing speeds, postural transition detection, or detection of fidgeting
while sitting and standing.

For accurate detection of postural transitions, walking, and jog-
ging from body accelerations, wavelet transforms provide a better
representation of the signal complexity than Fourier transforms.
Building on a previously validated methodology [16], the current
study provides algorithms for postural detection while including
daily activities such as fidgeting while sitting or standing, transi-
tions, and a range of walking speeds. Using wavelet transforms, it is
possible to determine the changing frequency content over time on
a non-stationary signal [17]. By representing the signal as a sum of
a scaled and time shifted mother wavelet, wavelet transforms have
previously demonstrated their utility in obtaining transition and
gait pattern information [17,18]. In this study, we utilize continuous
wavelet transforms (CWT) to identify slow walking instants.

A robust method for classifying postural orientation and move-
ment needs to be established that can be applied to healthy and
patient populations. Therefore, the purpose of this study was  to
develop and validate an algorithm for the identification of static
postures and dynamic movement from acceleration data against
visual inspection from video recordings in the laboratory. Specif-
ically, the utility of tri-axial accelerometers in detecting static
orientations of standing, sitting and lying down as well as dynamic
movements of walking, jogging and transitions was  assessed for
validity and reliability. Identification of walking and jogging was
further assessed over a range of gait velocities.

2. Materials and methods

2.1. Experimental design

This investigation included 12 healthy adults (9 females; median
(range) age of 31 (25–55) years; average (SD) body mass index
(BMI) of 24.7 (5.5) kg/m2), who were free of musculoskeletal
deficits, neurological impairment or lower extremity surgery. Sub-
jects were asked to perform two experimental protocols. During the
first protocol, an approximately 5 min  series of static postures and
dynamic movements were conducted, consisting of sitting, stand-
ing, lying, walking, jogging and stair climbing in the laboratory
(Table 1). Additionally, during a portion of the sitting and standing
tasks, subjects were asked to ‘shuffle’ their body to simulate chang-
ing body position or fidgeting during sitting and standing tasks. An
investigator provided verbal cues for performing each task.

For the second protocol, in order to test the ability of the algo-
rithm to accurately detect postures and movements at a range of
gait speeds, subjects were asked to walk across an 8.5 m walkway

at 7–10 self-selected slow, medium and fast speeds. During each
trial, photocells placed on either end of the walkway recorded the
subject’s walking duration, with walking velocity calculated based
on the distance traversed and the time duration. Following each
trial, subjects were asked to walk at a slower or faster speed, in
order to obtain a range of gait speeds.

2.2. Data collection

Static orientations and dynamic movement was recorded using
a hand held video camera and activity monitors. The video cam-
era collected data at 60 Hz, with an investigator ensuring that
the subject remained within the capture volume throughout the
experiment. Custom built activity monitors, developed at the Mayo
Clinic, collected acceleration data at 100 Hz. Each sensor contained
a tri-axial MEMS  accelerometer (analog, ±16g, Analog Devices),
microcontroller (12 bit ADC, Texas Instruments), power source
(Tadiran battery, semiconductor voltage regulator), and onboard
data storage (NAND flash memory, 0.5 GB memory chip, Micron).
Accuracy of the accelerometers was  determined to be within
±0.56%. Two  activity monitors, each weighing 22 g with dimensions
of 4.7 cm × 2.8 cm × 1.2 cm,  were donned on subjects on a waist
band on the pants between the two ASIS and on the lateral mid-
point of the right thigh. Monitors were oriented such that the y-axis
pointed vertically. The x- and z-axes were directed in the anterior
and lateral directions for the waist; and in the lateral and posterior
directions for the thigh. The study protocol was  approved by the
Mayo Clinic Institutional Review Board and written informed con-
sent was  obtained from all research participants prior to beginning
data collection. Video data were synchronized to the accelerometer
data by asking all subjects to perform three vertical jumps prior to
performing the described protocol. The two  accelerometers were
also synchronized to each other based on the onset of jumping. Prior
to data collection, both accelerometers were calibrated to record
+1g, 0g and −1g when placed in orthogonal orientations.

2.3. Movement detection

Prescribed postures and movements performed by the research
participants during the protocol were analyzed and identified
(Fig. 1). Accelerometer analyses were performed using custom
MATLAB programs (MathWorks, Natick, MA). Acceleration sig-
nals from the waist accelerometer were used to differentiate
dynamic activity from static postures. In order to remove any
high-frequency noise spikes, a median filter with a window size
of 3 was applied to each of the three orthogonal raw acceleration
signals [16]. The resulting filtered signal was separated into its
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Fig. 1. Decision algorithm for the possible posture and activity classifications determined from the accelerometer data. SMA refers to the signal magnitude area and CWT  to
the  continuous wavelet transform.

gravitational component by using a third-order zero phase lag
elliptical low pass filter, with a cut-off frequency of 0.25 Hz, 0.01 dB
passband ripple and −100 dB stopband ripple. Subtracting the
gravitational component from the original median filtered signal
provided the bodily motion component.

The gravitational and bodily motion components of the
acceleration signal were used to identify all possible outcome con-
figurations (Fig. 2). The bodily motion component was  utilized in
determining static versus dynamic activity, with signal magnitude
area (SMA) values above a threshold of 0.135g identified as move-
ment [19]. The signal magnitude area was computed over each 1 s
window (t) across all three orthogonal axes (ax, ay, az) (Eq. (1)).

SMA  = 1
t

×
(∫

ax(t)dt +
∫

ay(t)dt +
∫

az(t)dt

)
(1)

Of those seconds of data identified as non-movement (i.e. or
those seconds below 0.135g), a continuous wavelet transform was
utilized [20]. The Daubechies 4 Mother Wavelet was  applied in
this study on the waist acceleration signal. Data which fell within
a range of 0.1–2.0 Hz was further identified as movement, if it
exceeded a scaling threshold of 1.5 over each second. The wavelet
toolbox in Matlab was used to calculate the wavelet transforms.

2.4. Postural orientation

The gravitational component of the signal provided the tilt angle
over all three orientations (�, ϕ, ˛) for the device [16]. Both the
waist and thigh accelerometer orientations were used to identify
postures (Eq. (2)).

� = arccos
(

ax

g

)
; ϕ = arccos

(
ay

g

)
;  ̨ = arccos

(
az

g

)
(2)

Lying down was determined when the absolute value of the
vertical waist angle was between 50◦ and 130◦, with undefined
orientations defined for waist angles greater than 130◦ and upright
postures between 0 and 50◦. Among upright postures, standing and
sitting were differentiated based on the thigh angle, in relation to
gravity, of less than 45◦ or greater than 45◦, respectively [21]. To
differentiate lying conditions between supine, prone, left and right
positions, the waist angles in transverse plane were portioned into
four equal 90◦ segments [16].

2.5. Dynamic classification

Among dynamic portions of data, the orientation of the waist
again indicated whether an individual was  sitting, lying down or
upright on both feet. Rolling over while lying down was classified
as a transition, specifically lying to lying. For the remaining tran-
sitions of upright to lying, lying to upright, sit to stand or stand to
sit, beginning and ending segments of lying and sitting were iden-
tified. If a different orientation (lying, sitting, and standing) was
identified up to 2 s prior to and 2 s after the beginning and ending
points, the appropriate transition was labeled for the active seconds
of postural change. Among upright movement, sitting while fidget-
ing was  identified by the thigh angle. Walking and jogging were
differentiated among the remaining upright movements based on
a threshold of 0.80g for the SMA. The walking category included
stair climbing, level walking, and portions of standing while fidget-
ing.

Thresholds for static and dynamic classification were deter-
mined based on observations made on a single random subject prior
to complete validation on the remaining participants, with chosen
values similar to those previously utilized [16,21]. Initial thresh-
olds were based on algorithms previously reported [16], with visual
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Fig. 2. Sample data of the waist accelerations (g = 9.81 m/s2) collected for a subject while performing a series of tasks (A) and walking at a range of gait speeds (B).

optimization performed for modification of the orientation values
and SMA  thresholds.

2.6. Reliability

Video data were imported into Windows Movie Maker
(Microsoft, Seattle, WA). Two raters, each with greater than one
year of gait analysis experience, determined the starting and end-
ing times for each static orientation and movement. The video
data were considered the gold standard for all validation analy-
sis. Classified data were organized into 1 s windows for the video
data. Reliability of inter-rater video observations were determined
using intraclass correlations across all subjects for the total time
spent in each posture or movement (ICC) (A,1) [22]. Fidgeting
while sitting and standing was categorized as activity by video
observers.

2.7. Validity

Validity of the accelerometer algorithm to properly identify
different postures and movement was assessed with sensitivity
and positive predictive value. Similar to the video classification,
accelerometer data were organized into 1 s windows. Sensitivity
described the percentage of an observation category which was
correctly detected by the accelerometers, or the ratio of true
positives to the sum of true positives and false negatives. Positive
predictive value (PPV) provided the percentage of true positives
that was identified when compared to the total number of true
positives and false positives determined by the accelerometers.
The sensitivity and PPV were considered substantial when greater
than 60% and almost perfect when greater than 80% [24]. In a recent
study, a sensitivity of 71.7% and specificity of 67.8% were classified
to be acceptable for detecting sitting postures in healthy children
[25]. The Bland–Altman method was utilized to compare the total
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Table 2
Duration spent in each task and the intraclass correlation coefficient (ICC) for two
raters.

Task Rater 1 (s)a Rater 2 (s)a ICCb

Dynamic movementc 175 (18) 178 (18) 0.96
(0.80, 0.99)

Walking 109 (13) 107 (13) 0.95
(0.82, 0.99)

Jogging 34 (4) 35 (5) 0.94
(0.55, 0.99)

Transitions 31 (5) 34 (7) 0.47
(−0.04, 0.80)

Standing 57 (13) 56 (13) 0.96
(0.86, 0.99)

Sitting 61 (13) 61 (13) 1.00
(0.99, 1.00)

Lying 63 (6) 61 (6) 0.92
(0.65, 0.98)

a Values provided are the mean and standard deviation.
b Values provided are the ICC (A,1) along with the lower and upper bounds for the

95% confidence interval [22].
c Dynamic movement included walking, jogging and transitions.

time spent in each posture or movement type as determined by
both the accelerometers and video observation [26].

3. Results

All twelve participants completed the protocol as prescribed,
with complete acceleration traces acquired for eleven subjects
(Fig. 2). For one individual, the waist accelerometer came loose
during the laying down transitions, and therefore all subsequent
analyses during the first protocol for this subject were not utilized.

3.1. Reliability

The total time to complete the first protocol averaged 359 ± 42 s,
with further discrimination of movement demonstrating only
slight differences between the two observers for most postures
(Table 2). Reliability of video observation was high, with ICC values
greater than 0.95 for all postures and activity, except for tran-
sitions. Video identification of transition had ICC values of 0.47,
indicating differences between the two raters in identifying lying
to lying, upright to lying, lying to upright, sit-to-stand, and stand-
to-sit transitions. All further analyses were performed comparing
accelerometer identification to a single observer.

3.2. Validity

Only the waist accelerometer was required to accurately detect
onset of movement. The addition of the thigh monitor allowed for
identification of sitting postures. The current algorithm did not
provide a means for discriminating stair climbing from level walk-
ing. The results of a second-by-second comparison of accelerometer
data to rater identification of different tasks demonstrated median
sensitivities above 98% for static orientations of sitting and lying
down (Fig. 3A). A greater number of false positives were detected
for standing, as accelerometers categorized fidgeting while stand-
ing as movement, with the identification of standing having
sensitivity values of 86%. Among dynamic orientations, walking
and jogging were accurately identified, with median sensitivities
of greater than 96%. Second-by-second transition identification
demonstrated a median sensitivity of 87%. Average positive pre-
dictive values were greater than 80% for all static and dynamic
orientations, except for standing and transitions (Fig. 3B). Tran-
sitions demonstrated the lowest positive predictive values, with
a median value of 71%. When fidgeting tasks were excluded, the

Fig. 3. Sensitivity (A) and positive predictive value (B) when identifying static ori-
entations and dynamic movements with accelerometer data compared to video
identification among all subjects. The central line represents the median, the edges
of  the box are the 25th and 75th percentiles, and the whiskers extend to ±1.5 of
the interquartile range. Outliers beyond this range are labeled as ‘+’. For the PPV of
jogging, the median value is equal to 100%.

positive predictive values of static standing and transitions
increased to 85%.

The false positive lying orientations that were incorrectly iden-
tified by the accelerometer occurred during the fidgeting while
sitting task, as individuals would orient themselves such that the
waist accelerometer assumed a supine lying stature. False nega-
tives occurred at the beginning or end of the lying tasks, with the
accelerometer identifying these seconds as transitional. Among the
lying positions, supine, prone, left or right lying orientations were
correctly identified at greater than 98% sensitivity and 94% PPV
across all subjects.

The amount of time spent in each static or dynamic task demon-
strated substantial agreement, when utilizing the Bland–Altman
method to compare the accelerometer to video observation (Fig. 4).
Larger differences were demonstrated for standing, once again
reflective of interpretation in the fidgeting tasks. Transition times
were often identified as different static or dynamic task at the start
or end of some tasks resulting in greater discrepancy during these
seconds of transition. Additionally, waist accelerations did not
reach the predetermined threshold for jogging in one individual.
By jogging and walking at similar speeds, incorrect identification
of the jogging task led to a single subject falling outside the 1.96
SD range for both movements. Among transitional standing tasks,
individuals often took small steps, turns or other slight movements
as they awaited instruction. While video observation listed these
fidgeting seconds as static standing, the accelerometer would iden-
tify these times as activity if the SMA  reached the predetermined
threshold.
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Fig. 4. Bland–Altman plots demonstrating error in identifying each of the static and dynamic activities when using accelerometer compared to video identification. The data
for  each of the 12 subjects studied includes fidgeting while sitting or standing. The dashed line is the average, while the solid lines represent the repeatability coefficient
(±1.96  SD).

Utilizing a combination of SMA  and wavelet transform thresh-
olds, walking was accurately detected at speeds ranging from 0.1
and 4.8 m/s  (Fig. 5). Most discrepancies occurred at the endpoint
seconds of activity segments, thereby reducing the sensitivity of
faster walking segments which were completed in a short duration.
During the outlier trials, subjects additionally performed stutter
steps at the beginning of the trial, with investigators not identifying
these seconds as movement.

4. Discussion

The purpose of this study was to develop and validate an algo-
rithm using accelerometers to classify static postures and dynamic
movement. Additionally, accuracy of these devices to recognize
movement was quantified over a range of tasks, gait velocities, and

realistic daily activity such as fidgeting while sitting and standing.
Utilizing two  accelerometers allowed for accurate assessment of
static and dynamic orientations. Tri-axial accelerometers attached
to the waist and thigh can therefore be utilized to accurately track
individuals in the free-living environment. The ability to identify
movement at slow velocities below 1.0 m/s  can allow for accurate
detection among adults and patients with slow walking velocities
[7].

While previous studies have utilized one accelerometer to
detect posture and movement [10,27], the use of a second monitor
attached to the thigh can provide greater accuracy in discrimi-
nating weight bearing and non-weight bearing activities [28,29].
Additionally, the use of a 16g accelerometer can allow for proper
assessment of an extensive range of daily physical activity, includ-
ing possible fall event detection [29,30].

Fig. 5. Boxplot of activity detection when walking at a range of gait velocities. The median sensitivity (A) was greater than 84% and the median PPV (B) 100% at all velocities.
The  central line represents the median, the edges of the box are the 25th and 75th percentiles, and the whiskers extend to ±1.5 of the interquartile range. Outliers beyond
this  range are labeled as ‘+’
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Inter-rater reliability was almost perfect, with ICC values greater
than 0.92, when comparing all video observations except for poor
reliability during transitions between postures or activities. ICC val-
ues for standing, sitting and walking are comparable to previous
results, in which walking, sitting, standing, and lying ICCs were
found to be 0.95, 0.78, 0.99 and 0.98, respectively [10,31]. Inter-
rater reliability of transitions has not been previously reported.
Discrepancies between observers occurred due to differences in
the frame selection at the beginning or end of postures. Rater selec-
tion of transition times was therefore variable. Since the variance
and length of time spent in transition was small, the ICC values
also became smaller with any differences observed [32]. Variable
observer identification can therefore affect accuracy values for pos-
ture and movement.

While incorrect identification of movement and posture could
lead to under- or overestimation of intervention efficacy among
clinical populations, the current algorithm demonstrated a valid
detection of movement and posture. Among the subjects tested,
median sensitivity and positive predictive values of static posture,
walking, and jogging classification was greater than 85%.

These results are superior to or similar to those previ-
ously reported for other accelerometer based activity monitors
[16,21,33], where walking, standing, sitting and lying demonstrat-
ing agreement ranging from 65.1 to 98.9% during a fixed protocol
and 68.3–85.9% in the home environment [10]. While average
sensitivities across subjects were adequate, some subjects demon-
strated reduced sensitivity during the standing posture. For these
subjects, fidgeting during stance and imprecise monitor place-
ment due to body habitus resulted in decreased accuracy of the
accelerometer identification. Subjects were asked to don the waist
monitor below the navel, and discrepancies in the vertical orien-
tation of the monitor produced tilt angles of greater than 0◦ when
standing upright due to excessive adipose tissue. When standing,
lying or sitting, these angles often became exaggerated, with incor-
rect identification of the static orientation occurring across several
seconds.

The use of SMA  to distinguish walking from other activity has
demonstrated good sensitivity and specificity [20]. While such
analysis has previously been utilized to detect movement during
self-selected walking speeds of healthy adults, it cannot accu-
rately recognize movement among slower walking adults. By using
wavelet transforms, the ability to identify slow walking is addition-
ally accomplished in this study, with high accuracy down to 0.1 m/s.
By detecting slow gait velocities, it becomes possible to accurately
quantify walking in older adults and patients. No studies to our
knowledge have investigated walking detection at slow gait veloc-
ities, though high accuracy of step counting has been reported for
speeds between 0.90 m/s  and 1.84 m/s  when walking over ground
and on a treadmill [34]. Investigating slow walking speed is of clin-
ical importance, as of those older adults who walk at less than
0.25 m/s, only 36% are independent in all ADL functions [7]. Increas-
ing gait velocity beyond 0.55 m/s  increases ADL functionality, with
adults walking faster than 1.0 m/s  demonstrating good functional
status and better survival rates [7,8,35].

Distinguishing higher physical activity such as jogging was
further enabled in this study using the SMA  threshold of 0.80g.
This threshold allowed for accurate detection and discrimination
between walking and jogging. A previous study that utilized the
ratio of the unfiltered to filtered acceleration as well as the filtered
vertical to filtered horizontal accelerations at the waist demon-
strated the ability to discriminate locomotive tasks from household
tasks [27], but identification of walking, jogging, and stair climbing
activities was not demonstrated.

Any inaccuracy in classification of standing, sitting, and walk-
ing was due to fidgeting tasks, window size resolution, and task
duration. All subjects were asked to perform sitting and standing

tasks for approximately 15 s while fidgeting to recreate motions
produced by individuals when fidgeting at the desk or while stand-
ing. Such high frequency, short-duration walking behavior was
previously demonstrated by nondisabled adults over the course
of a 2-week period [36]. While some subjects in our study vol-
untarily moved only slightly, greater motions resulted in reduced
sensitivities for some subjects. When assessing non-fidgeting sit-
ting and standing tasks, classification accuracy increased beyond
85%. Not including fidgeting tasks, classification errors occurred
only at the beginning or end of each activity. These differences can
be attributed to segmentation of both the accelerometer and video
data to 1 s windows.

Greater resolution in window size would presumably provide
even greater accuracy. Mathie and colleagues suggested win-
dow width around 1 s, consistent with the timescale of human
movement, though a smaller window size might provide added
optimization [19]. In our study, certain transitions and standing
activities were observed to take under 1 second during video anal-
ysis. Such quick activity might have added to the errors seen in the
transitional periods.

The duration of the tasks in this study was limited to between 15
and 30 s per segment. With longer duration tasks, greater accuracy
can be achieved, as misclassification commonly occurs during the
1 s at the beginning or end of a task. Greater accuracy is expected
for long duration postures using the current algorithm, with studies
demonstrating an accuracy of 80% for longer duration tasks in both
the laboratory and home environment setting [10,33]. In a previ-
ous study investigating posture in elderly adults over the course
of 4 days, accuracy of sitting, standing and lying was  found to be
92%, 98%, and 95%, respectively, using 1 min  windows [33]. The use
of fidgeting, slower walking speeds in this study, and the ability
to accurately identify movement in all subjects allows for a robust
algorithm. As 40% of walking bouts last 12 steps or fewer [36], fid-
geting and short duration tasks were of importance in this study.
While longer duration tasks allow for greater accuracy, short dura-
tion tasks typically seen in the free-living environment could lead
to reduced accuracy. While other authors have further discounted
movement that lasted less than 5 s [12], all transitions and short
duration movements were included in the current analysis.

A limitation of this study is the current inability to differentiate
stair climbing from level walking. While further analysis will inves-
tigate the differences in these two  tasks, it is noted that subjects in
the current study were ambulating at similar speeds when walk-
ing and stair climbing, with upright locomotion activity properly
identified. A second limitation is the lower accuracy in detecting
transitions. While identification was poorer for this activity, sensi-
tivity and PPV results still exceed 70%. Utilizing video observation
as a gold standard can also be subjective and error prone, as demon-
strated by discrepancies in identifying transitions between raters.

While accelerometer based identification utilizes objective
measures, raters often identify end points of posture and motion
inconsistently, resulting in many of the inaccurate findings
throughout the study. While validation was performed in a lab-
oratory setting, the algorithm will be further tested for real-time
processing in a free-living environment. The strength of this
study is in the inclusion of a range of body types (BMI range of
19.9–40.1 kg/m2) with a less constrained testing procedure that
includes more natural movements, such as fidgeting during static
postures, and a range of gait speeds.

5. Conclusion

Results of this study suggest that the use of accelerometers can
accurately detect static postures and dynamic movement among
the general population. The ability to identify static and dynamic
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tasks as well as at a range of gait velocities can allow for accurate
classification of all adults in the home living environment.
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