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Abstract

The use of motion analysis to assess balance is essential for determining the underlying mechanisms of falls during dynamic
activities. Clinicians evaluate patients using clinical examinations of static balance control, gait performance, cognition, and
neuromuscular ability. Mapping these data to measures of dynamic balance control, and the subsequent categorization and
identification of community dwelling elderly fallers at risk of falls in a quick and inexpensive manner is needed. The purpose
of this study was to demonstrate that given clinical measures, an artificial neural network (ANN) could determine dynamic
balance control, as defined by the interaction of the center of mass (CoM) with the base of support (BoS), during gait. Fifty-
six elderly adults were included in this study. Using a feed-forward neural network with back propagation, combinations of
five functional domains, the number of hidden layers and error goals were evaluated to determine the best parameters to
assess dynamic balance control. Functional domain input parameters included subject characteristics, clinical examinations,
cognitive performance, muscle strength, and clinical balance performance. The use of these functional domains
demonstrated the ability to quickly converge to a solution, with the network learning the mapping within 5 epochs, when
using up to 30 hidden nodes and an error goal of 0.001. The ability to correctly identify the interaction of the CoM with BoS
demonstrated correlation values up to 0.89 (P,.001). On average, using all clinical measures, the ANN was able to estimate
the dynamic CoM to BoS distance to within 1 cm and BoS area to within 75 cm2. Our results demonstrated that an ANN
could be trained to map clinical variables to biomechanical measures of gait balance control. A neural network could
provide physicians and patients with a cost effective means to identify dynamic balance issues and possible risk of falls from
routinely collected clinical examinations.
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Introduction

Over one third of adults over the age of 65 will fall each year

[1]. Falls are not only associated with injury and morbidity, but

also reductions in physical, psychological, and social capacities

[2,3]. The direct cost of falling exceeds $10 billion a year in the

United States [1,2], with almost 9,500 deaths per year attributed

to falling [2,3]. Epidemiological studies have shown that 30–70%

of falls occur while level walking and thus understanding balance

control during gait remains paramount.

Falls in the elderly are a complicated phenomenon comprising

multifactoral risk factors, including both intrinsic and extrinsic

issues [4]. Intrinsic factors, or those related to the individual,

include a decreased performance in the balance control system,

with loss of mobility being a strong indicator for increasing fall risk.

In order to maintain stability, adequate levels of vision, vestibular

function, musculoskeletal function, and proprioception are all

required. Prior studies have also shown that decreased lower-

extremity muscle strength and cognitive function are significant

predictors of falls among older adults [4–6]. Extrinsic factors, or

those pertaining to environmental hazards, contribute significantly

to fall incidents and can include objects to trip over, poor lighting,

slippery surfaces, or inappropriate furniture [3]. The ability to

understand which of the multitude of neuromuscular, cognitive,

and sensory factors most contribute to balance control ability

during gait can provide further ability to diagnose and treat elderly

at risk of falling.

While clinically valuable, gait analysis can be both expensive

and time inefficient for laboratory technicians, with a data

collection taking up to 2 hours and costing up to $2,000 [7].

Having a model that could predict the fall risk of elderly

individuals based on calculated gait balance control parameters

would be a clinically viable and inexpensive solution. In order to

achieve this, models are needed which can find a mapping

between clinical and laboratory biomechanical measures. Fall

prediction models have previously used logistic regression as well

as static posture variables and clinical measures to determine fall

risk. These included predictions based on Berg balance scores,

Timed Up and Go test, and self-reported history of imbalance and

history of falls to determine the risk of falling among a group of

elderly individuals [4,8]. Such models require that input predictors

explain a high degree of variability and make the assumption that

linear relationships exist between variables. Another approach

which would allow for non-linear relationships and include a

number of input variables is an artificial neural network (ANN)

[9]. An advantage of ANN models is that they can be built to infer
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a function simply from observation or training. By exposing the

model to set of elderly adult data, with known input and output

values, the ANN can be trained to an appropriate level.

Neural networks have been previously trained to efficiently

determine foot-strike and foot-off events [10], as well as identify

temporal or amplitude asymmetry in bilateral vertical ground

reaction forces [11]. The use of an ANN in gait analysis has

additionally demonstrated greater accuracy in discriminating

patient populations from healthy adults, when compared to using

linear discriminant analysis [12]. Further applications include

estimating joint kinetics and kinematics using electromyography

[13], as well as mapping spatio-temporal gait and electromyo-

graphic measures to dynamic balance control measures and fall

risk [9,14].

Since complete and accurate measurement of spatio-temporal

gait variables is not possible in the clinical environment, the

purpose of this study was to test the feasibility of a neural network

model in mapping commonly used clinical measures to laboratory

balance measures. Clinical measures included a history of falls,

deficits in sensory motor function, visual and hearing impairment,

presence of chronic disease or depression, number of medications,

and clinical balance examinations. We hypothesized that an ANN

model could determine the balance control of elderly individuals

given easily assessable clinical measures such as static balance

examinations, cognitive performance, and muscle strength.

Methods

Subjects
A total of 56 community living elderly subjects [age (SD) = 76.1

(6.5) years; 22 males] were recruited for this study. A phone screen

was performed prior to recruitment. All subjects reported no

history of head trauma, neurological disease, heart disease or

visual impairment that was uncorrected by glasses. In addition,

subjects confirmed that they were able to ambulate for up to

10 minutes without the use of an assistive device. A clinical and

laboratory gait evaluation was then performed on all subjects by a

physician and trained researchers, respectively. Each subject

signed an informed consent statement, in accordance with ethics

approval granted from the Institutional Review Board of

University of Oregon, prior to participation in the study.

Clinical Evaluation
The body mass index (BMI) was computed for each subject

along with a full medical history of prior fall history, the number of

medications taken, and co-morbidities. In addition, physicians

evaluated proprioceptive ability, vision, and hearing. The Geriat-

ric Depression Scale (GDS) was used to evaluate depression [15].

The Activities Specific Balance Confidence Scale (ABC) provided

information on a person’s self-perception of balance ability [16].

Static balance was evaluated using the Berg Balance Scale (BBS)

[17]. Dynamic gait performance was recorded through the Timed

Up and Go test (TUG) [18]. Cognitive ability was estimated using

the Trail Making Test (TMT) A and B, as well as the Saint Louis

University Mental Status (SLUMS). The TMT test was evaluated

based on the difference in scores on the B and A test [19]. This

difference has been shown to demonstrate the task switching cost.

The SLUMS was used to identify any dementia or mild neuro-

cognitive disorder by conducting screening tests for orientation,

memory, attention, and executive function [20].

Bilateral isometric muscle strength of the hip abductors, knee

extensors, and ankle plantarflexors was tested using a Biodex

System 3 dynamometer (Biodex Medical Systems, NY). For hip

strength, the subject was instructed to abduct while standing in the

neutral position. Knee extensor strength was evaluated in the

seated position at 60 degrees of knee flexion. Ankle plantorflexor

strength was tested while seated at 20 degrees of knee flexion and

in a neutral ankle position. The peak torque value for each joint

was recorded and normalized to a person’s body mass.

Laboratory Gait Balance Evaluation
Subjects were asked to walk at a self-selected comfortable speed

across a 10-meter walkway. During ambulation, 29 retro reflective

markers were placed on bony landmarks of the body [21], with

three dimensional marker trajectories captured with an 8-camera

motion analysis system (Motion Analysis Corp, Santa Rosa, CA).

Data were filtered using a fourth-order low pass Butterworth filter

with an 8-Hz cutoff frequency. Ground reaction forces and

Figure 1. Neural network architecture representing the three layers as well as the tangential sigmoid and pure linear transfer
functions in the hidden and output layers, respectively. All nodes are not represented in this diagram, though a weighted sum of all inputs
and the bias is performed at each node in the hidden and output layers.
doi:10.1371/journal.pone.0097595.g001
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Figure 2. Number of epochs required for convergence to error goal given the number of hidden nodes during training of the neural
network with all 16 input variables.
doi:10.1371/journal.pone.0097595.g002

Table 1. Demographics of all 56 participants [mean (SD)].

Subject Characteristics

Age (years) 76.1 (6.5)

Gender (Males/Females) 22/34

BMI 27.4 (6.1)

Clinical Examination

Fall History (number in past year) 0.95 (1.35)

Number of Medications 3.8 (3.2)

Visual acuity (/20) 36.6 (11.7)

Hearing (number impaired) 14

Clinical Balance

BBS (/56) 53.4 (3.8)

TUG (seconds) 9.0 (2.0)

ABC (%) 85.7 (13.6)

Cognitive Performance

TMT B-A (seconds) 63.2 (63.0)

GDS (/15) 1.6 (1.9)

SLUMS (/30) 26.4 (3.3)

Muscle Strength a

Ankle Plantarflexion 3.1 (2.3)

Knee Extension 3.8 (2.7)

Hip Abduction 1.9 (1.6)

Gait Balance Control b

CoM-BoS distance (cm) 3.8 (1.1)

CoMv-BoS displacement (cm) 19.3 (3.5)

BoS Area (cm2) 436 (88)

aNormalized to body weight and body height (Nm/BW*BH).
bBalance control measures evaluated at heel strike.
doi:10.1371/journal.pone.0097595.t001
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moments were captured from three floor-embedded force plates

(Advanced Mechanical Technologies Inc., Watertown, MA).

Marker and force plate data were collected at 60 Hz and

960 Hz, respectively.

Balance control during gait included analysis of the position and

velocity of the center of mass (CoM) in relation to the dynamically

changing base of support (BoS) [22]. The distance from the CoM

position to the closest border of the BoS (CoM-BoS) represented

static balance control. The displacement of the CoM along the

direction of the CoM velocity vector to the boundary of the BoS

(CoMv-BoS) represented dynamic balance control. The BoS area

was calculated based on the anthropometrics and configuration of

the feet. These three measures were evaluated at heel strike of both

limbs across all gait cycles.

ANN Development
An artificial neural network is a series of interconnected nodes

(biological neurons) which approximates the relationships, or

adaptive weightings, between input and output measures. Similar

to biological nervous systems, connections (biological synapses)

were established through a learned iterative process. Upon

receiving one or more inputs (biological dendrites), a node was

able to compute a weighted sum and pass a value through a non-

linear transfer function to establish an output function. Training,

or learning and the establishment of synapses, occurred by using

the clinical (inputs) and balance control (outputs) data among a

subset of individuals, then solving for the weights of the inter-

connections in an optimal manner. Inferring the mapping implied

by the data and finding the solution that has the smallest possible

cost allows the ANN to arrive at a satisfactory weighting level.

Once the ANN model was trained, it was then be used to predict

outputs for the remaining subset of individuals.

The ANN used in this study was designed to calculate the gait

balance control measures of each subject. Input data sets included

subject characteristics (age, BMI, gender), clinical examination (fall

history, medications, vision, hearing), clinical balance performance

(BBS, TUG, ABC), cognitive evaluation (TMT, GDS, SLUMS),

and muscle strength (bilateral ankles, knees and hips). The ANN

program is provided as Program S1 in supplementary materials.

A three-layer, feed-forward back-propagation ANN was con-

structed using MATLAB (Mathworks Inc., Natick, MA; Figure 1;

see Program S1). The first layer of the network consisted of

different combinations of the normalized input data sets, with

between three and 16 possible clinical measures included in each

iteration of the analyses. The second layer included 5, 10, 20 or 30

hidden neurons. The third or output layer included the three

laboratory gait balance control variables. Out of the 56 subjects,

42 were randomly selected for training, with testing performed on

the other 14 subjects. This process was repeated 4 times in order to

test the network on all 56 subjects, with training stopped when the

mean squared error (MSE) error reached 0.1, 0.01 or 0.001. Error

correction during training was conducted with the Levenberg-

Marquardt algorithm [23]. Weighted incoming signals were

summed at the hidden and output units, with a tangential sigmoid

transfer function and pure linear transfer function used at each

layer, respectively. Details of the network have been described

previously by Hahn and colleagues [14].

After successful training, all balance control data was converted

back to real world units of cm and cm2, for the distance and area

measures, respectively. The ability of the ANN model to

accurately estimate CoM-BoS balance control measures in

comparison to actual gait measurements was assessed via

correlation analysis. Differences in accuracy in the correlation

coefficient (R) between the number of hidden units (5, 10, 20 or

30), between the error goal (0.1, 0.01 and 0.001), and across

grouping type were assessed with a 3 way ANOVA in SPSS 14.0

(IBM Inc., Armonk, NY).

Figure 3. Performance of the neural network using all 16 input
variables.
doi:10.1371/journal.pone.0097595.g003

ANN Estimation of Gait Balance Control

PLOS ONE | www.plosone.org 4 May 2014 | Volume 9 | Issue 5 | e97595



Results

The ability to calculate gait balance control using five functional

domains as well as a combination of all variables were investigated

(Table 1). In addition, 4 different hidden node sizes and 3 MSE

error goals were assessed for a total of 72 network iterations.

Minimal processing time was required for network training on all

these combinations. When 5 hidden nodes were used, much

greater time was needed for the solution to converge to an MSE

error of less than 0.01 or 0.001, with much of the samples reaching

the maximum limit of 500 epochs before failing to reach the goal

(Figure 2). The use of 20 or 30 hidden nodes was much more

efficient in training the data sets at all error goals.

The input type by error goal by hidden nodes interaction was

not detected for the CoM-BoS (P = .849), CoMv-BoS (P = .877) or

BoS Area (P = .477) correlations. Alternatively, an error goal main

effect was demonstrated for all three balance control dependent

variables (P,.001). Overall, as the error goal was decreased from

0.001 to 0.1 there was an increase in the correlation coefficient

(Figure 3), especially when utilizing 5 hidden nodes. Additionally,

an increase in hidden nodes from 10 to 20 demonstrated on

average a 0.10 greater correlation for the BoS area (P = 0.008) and

a 0.08 greater correlation for the CoM-BoS distance (P = 0.057).

Increasing to 30 hidden nodes demonstrated 0.08 and 0.11 greater

correlation for the CoMv-BoS distance and BoS area, respectively

(P = 0.016 and P = 0.004). No other hidden node or error goal

differences were detected.

Input variable differences were also demonstrated, as greater

correlations were demonstrated by using all variables, when

compared to any single input type (Figure 4). The combination of

all input variables, with 20 hidden nodes and a 0.001 error goal

resulted in the best training across all three dependent variables

(Table 2). The use of these parameters provided convergence

within an average of 4 epochs to finish training the network and

provided correlation values of R.0.80 for the CoM-BoS distance

and BoS Area. On average, using all input variables, the ANN was

able to calculate the CoMv-BoS distance to within 1 cm and the

BoS Area to within 75 cm2 for elderly adults (Figure 5).

Table 2. Average performance (SD) of selected combinations of inputs and the corresponding hidden nodes and error goal values
that produced the highest accuracy.

Inputs Hidden Nodes Error goal R1 R2 R3

All Input Variables 20 0.001 0.84 (0.06) 0.69 (0.16) 0.89 (0.05)

Clinical Balance and Clinical Exams 20 0.001 0.72 (0.22) 0.63 (0.12) 0.72 (0.10)

Clinical Balance and Cognitive Tests 20 0.01 0.67 (0.11) 0.54 (0.13) 0.63 (0.17)

Clinical Balance and Muscle Strength 20 0.01 0.74 (0.08) 0.73 (0.05) 0.63 (0.10)

Clinical Exams and Muscle Strength 20 0.01 0.71 (0.14) 0.57 (0.18) 0.72 (0.07)

Cognitive Tests and Muscle Strength 30 0.1 0.56 (0.08) 0.68 (0.04) 0.51 (0.05)

1 Correlations for the CoM-BoS distance.
2 Correlations for the CoMv-BoS displacement.
3 Correlations for the BoS Area.
doi:10.1371/journal.pone.0097595.t002

Figure 4. Maximum mapping performance of a three layer neural network in estimating the CoM-BoS distance, CoMv-Bos
displacement and BoS area across the five different input variable categories as well as when using a combination of all input
categories.
doi:10.1371/journal.pone.0097595.g004
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Utilizing all input variables, variability in input weights were

demonstrated across all learning iterations of the neural network.

While the predictive nature of the input weights is unknown,

nonetheless, the largest weights in the input layer were found for

the ABC test, vision performance, and hip abductor strength.

Discussion

The purpose of this study was to demonstrate that given clinical

measures readily obtained by a physician, an artificial neural

network can determine gait balance control among elderly adults

ambulating in a laboratory. In support of our hypothesis, with the

use of subject characteristics, clinical examinations, cognitive

evaluations, and muscle strength, we were able to demonstrate

that an ANN model could determine the balance control of elderly

individuals during gait.

Utilizing a combination of all variables performed strongest in

this study with correlation values for mapping clinical to balance

control measures of up to 0.89. Among the various functional

domains, muscle strength and clinical balance measures correlated

to gait stability better than subject characteristics, clinical

examinations, and cognitive performance. As the musculoskeletal

system is the effector system which maintains posture and controls

movement [24], it understandably plays an important role in

predicting dynamic balance control. Among nursing home

residents with a history of falls, the peak torque and power of

knee extensors, knee flexors, ankle plantarflexors, and ankle

dorsiflexors were significantly less than those of age-matched

controls [25]. Similarly, clinical balance measures such as the BBS,

though a measure of static balance ability, also maps strongly to

dynamic CoM and BoS interactions during gait. Additionally,

both muscle strength tests and clinical balance examinations are

commonly used in the clinical setting to evaluate elderly adults at

risk for falling.

As individual functional domains, subject characteristics, clinical

examinations and cognitive performance did not map strongly to

gait balance control performance. While age related differences

have been reported for the BBS, TUG, and gait speed for male

and female older adults [26], these measures were not strongly

correlated with gait balance control using the ANN mapping, as R

values for these three domains ranged from 0.3 to 0.6.

Interestingly, a combination of the TMT, SLUMS and GDS did

not demonstrate strong mapping with gait balance control

measures as well. Though depression has been associated with

standing imbalance [27] and increased incidence of falls [28],

similar relationships to gait balance control were weak. Similarly,

medication use, prior falls and cognitive performance have all

shown a relationship to falls, though they were not as strong when

mapping to dynamic balance control [28]. Among our subject

population though, most adults reported no depression, while

being highly active and functional. Confirming the findings of the

two strongly correlated functional domains, Rubenstein found that

the important risk factors for falls are more often related to muscle

weakness and gait or balance deficits [29].

Improvement in the ability to properly determine balance

control measures were demonstrated with an increased number of

hidden units. The use of additional hidden nodes has previously

been hypothesized to be an indicator of enhanced generality, with

greater plasticity and pathways to a solution [14]. Similar network

architecture has been successful in gait research. The ability to

characterize lower extremity joint kinematics and kinetics based

on muscle electromyographic activity was shown to confirm with

physiological expectations [13]. Prior studies have also utilized two

hidden layer architectures and shown an ability to correctly

identify gait conditions using fast Fourier transform of lower

extremity kinematics as inputs, with up to 83% accuracy [30]. In

the current study, single hidden layer architecture was utilized as

this has been shown to be computationally faster and sufficient for

learning functional relationships [31].

While neural network weights are variable and the predictive

strengths unknown, the ABC score, vision, and hip abductor

strength demonstrated the greatest weighting when all groupings

were included as network inputs. The ABC, which is sometimes

used as an indicator of fear of falling, has also been shown

previously to be sensitive in discriminating fallers from non-fallers

[32]. Similarly, the ability to maintain balance is a function of

Figure 5. Representative data for the CoMv-BoS distance (A) and the BoS Area (B), as calculated by a neural network (triangles)
with 20 hidden nodes and an error goal of 0.01. All input variables were included in this training set, with the actual values for these balance
control measures represented by the open circles.
doi:10.1371/journal.pone.0097595.g005
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adequate visual information, with Nashner and Berthoz (1978)

demonstrating that reduction in vision increased sway amplitude

among older adults [33]. Furthermore, the hip abductor has been

shown to be important in maintaining lateral stability, with

changes in the base of support adapted by older adults in order to

control the CoM and compensate for decreased hip abductor

strength [34].

The use of biomechanics laboratory equipment to assess gait

performance can be time consuming and expensive [7]. While

biomechanical data are essential for determining the underlying

mechanisms of balance impairment and possible fall incidents

[35], the ability to categorize and identify community dwelling

elderly fallers at risk of falls in a timely and inexpensive manner is

needed. The strength of this study is the ability to map clinical

measures routinely collected by physicians to dynamic gait

measures which better characterize a person’s balance control.

The advantages of using an ANN is the ability to reveal the

multifactorial factors that can lead to poor balance control during

gait. By including a combination of five functional domains, it is

possible to learn mappings from the clinical measures to dynamic

balance control, and apply these connections to novel data sets.

A limitation of this study included the small sample size.

Though only 56 adults have thus far been fully screened by a

physician, the use of a neural network still demonstrated the ability

to quickly be trained and showed high correlation values of up to

0.89. This provides further evidence that an ANN can successfully

be used to assess a person’s gait balance control, without the need

for full assessment within a laboratory setting. Future research

needs to investigate the generalizability of this algorithm to a larger

sample of older adults. Additionally, utilization of a neural network

to predict changes in balance control ability and fall risk in the

elderly based on different interventions would be beneficial. The

ability for the network to provide predicted balance control

outcomes based on improvements at the input layer, such as

alterations in muscle strength, medications, or cognitive ability,

will hopefully provide a quick and useful way to assess predicted

changes in gait performance and possible fall risk. Similar

assessments of fall risk are available for clinical examinations such

as the BBS [4] or TUG [8], but a generalized form including all

five domains would be a valuable tool for older adults and

physicians.

In conclusion, results from this study demonstrated that an

artificial neural network could be trained to map clinical variables

to biomechanical measures of gait balance control. While further

studies will investigate the generalizability of this network to a

larger group of subjects, these initial findings suggest that an ANN

can be used to assess balance impairment in the elderly.

Supporting Information

Program S1 MATLAB codes for the three-layer, feed-
forward back-propagation ANN.

(DOCX)
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