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A B S T R A C T

The assessment of spatiotemporal gait parameters is a useful clinical indicator of health status. Unfortunately,
most assessment tools require controlled laboratory environments which can be expensive and time consuming.
As smartphones with embedded sensors are becoming ubiquitous, this technology can provide a cost-effective,
easily deployable method for assessing gait. Therefore, the purpose of this study was to assess the reliability and
validity of a smartphone-based accelerometer in quantifying spatiotemporal gait parameters when attached to
the body or in a bag, belt, hand, and pocket. Thirty-four healthy adults were asked to walk at self-selected
comfortable, slow, and fast speeds over a 10-m walkway while carrying a smartphone. Step length, step time,
gait velocity, and cadence were computed from smartphone-based accelerometers and validated with GAITRite.
Across all walking speeds, smartphone data had excellent reliability (ICC2,1 ≥ 0.90) for the body and belt lo-
cations, with bag, hand, and pocket locations having good to excellent reliability (ICC2,1 ≥ 0.69). Correlations
between the smartphone-based and GAITRite-based systems were very high for the body (r = 0.89, 0.98, 0.96,
and 0.87 for step length, step time, gait velocity, and cadence, respectively). Similarly, Bland-Altman analysis
demonstrated that the bias approached zero, particularly in the body, bag, and belt conditions under comfortable
and fast speeds. Thus, smartphone-based assessments of gait are most valid when placed on the body, in a bag, or
on a belt. The use of a smartphone to assess gait can provide relevant data to clinicians without encumbering the
user and allow for data collection in the free-living environment.

1. Introduction

Assessment of gait spatiotemporal parameters can provide valuable
insight regarding overall health [1], cognitive performance [2], quality
of life [3], and mortality [4]. The majority of gait assessments utilize
optoelectronic motion capture systems, force plates, and instrumented
walkways such as the GAITRite [5,6]. Although these instruments are
highly accurate, they require controlled laboratory environments, are
bulky, expensive, and involve tremendous time investment for setup
and analysis. Furthermore, these tools are not available in all clinical
settings, and cannot measure gait across more than a few steps or in
home-based environments. Nonetheless, due to their high reliability
and validity, these devices are frequently used as a gold standard for
gait assessment [7].

Recently, tri-axial accelerometers have been used in gait analysis as
an alternative to laboratory assessments. Not only can accelerometers
accurately quantify spatiotemporal gait parameters, but they also have

a number of advantages including a lower cost, portability, and ease of
use. Furthermore, accelerometer-based devices can collect data from
many gait cycles and allow measurements in more challenging contexts
[8]. Previous studies have demonstrated the validity of body-worn ac-
celerometers to quantify activities [9], steps [10], and gait parameters
[7]. Utilizing an accelerometer placed on the lower back, Hartmann and
colleagues [11] demonstrated excellent concurrent validity for asses-
sing walking speed, cadence, step duration, and step length among
older adults. However, accelerometer-based systems have a number of
disadvantages [12]. First, they usually attach directly onto the body
(e.g. trunk, wrist, ankle) which can lead to discomfort. Second, pro-
blems with memory and recall can reduce compliance. Lastly, the cost
of commercial software packages is relatively high.

As smartphones are becoming ubiquitous across age groups, uti-
lizing embedded sensors to assess gait is cost-effective, convenient, and
user-friendly. Instead of attaching directly onto the body, a smartphone
device can be engaged in the user’s hands, bag, belt, or pocket [13].
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Furthermore, measuring gait from smartphones is a practical solution
for lowering cost as well as improving accessibility, convenience, and
portability. Furrer and colleagues [14] have examined the intra-session
reliability and concurrent validity of the center of mass displacement
derived from the smartphone accelerometer, attached to the third
lumbar vertebrae, during level walking. Fair to excellent reliability
(ICC: 0.49–0.86) with moderate to strong correlations (Pearson r:
0.61–0.92) between smartphone and motion capture measurements
indicates that the use of a smartphone-based assessment can be valid
and feasible. Additionally, varying the placement of a smartphone on
the individual’s attire (i.e. hands, pockets, belt, or bag) has been found
to be valid for assessing the type of activity an individual is performing
[13].

To our knowledge, however, the ability to assess spatiotemporal gait
parameters based on a smartphone-based accelerometer is unknown.
Since people carry phones differently in everyday life, the effects of
varying placement of a smartphone on the body or attire while asses-
sing spatiotemporal gait parameters also needs to be investigated.
Hence, the aims of this study are: 1) to quantify the reliability and
validity of a smartphone-based tri-axial accelerometer in determining
gait characteristics (i.e. step length, step time, gait velocity, and ca-
dence) when attached to the body and when placed in a bag, belt, hand,
or pocket; and 2) to assess the validity of smartphone-based gait
parameters during slow, comfortable, and fast walking speeds. We hy-
pothesized that the use of a smartphone to evaluate gait spatiotemporal
variables will be reliable and valid across all gait speeds when attached
to the body and belt. We further hypothesized that smartphone place-
ment in a bag, hand, or pocket would result in reduced reliability and
validity. Reference values for gait parameters were obtained from a
GAITRite instrumented walkway.

2. Methods

2.1. Participants

This investigation included 12 healthy young adults (1 male;
mean ± SD age 22.7 ± 0.9 years; body mass index (BMI)
21.2 ± 4.1 kg/m2) and 22 healthy older adults (7 males; age
73.9 ± 5.6 years; BMI 23.7 ± 3.6 kg/m2) who were able to walk
continuously for at least ten meters without the assistance of another
person or a walking aid. Participants were excluded if they presented

with an unstable medical condition such as uncontrolled hypertension
or diabetes, reported severe neurological, musculoskeletal, or cardio-
pulmonary problems, had visual impairment uncorrectable with con-
ventional lenses, or had a lower limb amputation or arthroplasty.

All adults were recruited into the study through flyers posted in the
surrounding communities and by an announcement through commu-
nity leaders and primary health care providers. The study was approved
by the University’s Research Ethics Committee (Number 271/2016).
Written informed consent for the study protocol was obtained from
each participant prior to enrollment into the study.

2.2. Experimental design

Participants were asked to walk barefoot along a 10-m walkway at
their self-selected walking speeds. Two markers were placed on the
ground to indicate the start and end of the 10-m path, with the
GAITRite (CIR Systems Inc., Sparta, NJ, USA) walkway placed in the
middle of this path. To measure steady-state gait, only the middle 4.27-
m active sensor area of the GAITRite was used to examine gait para-
meters.

During all walking trials, participants carried a smartphone (Vivo
X5; Android 4.4.4; 143.3 mm × 71.1 mm× 6.3 mm; 141grams) in one
of five locations: 1) attached with a belt to the body above the third
lumbar vertebrae in the horizontal orientation; 2) in a shoulder bag
(15 cm × 18 cm) placed in a horizontal orientation, with the non-ad-
justable strap placed over the left shoulder and the pouch on the right
hip; 3) on a belt attached above the front right pant pocket in a hor-
izontal orientation; 4) in the right hand, held in a telephone speaking
position; 5) in the front right pant pocket placed in a vertical orienta-
tion (Fig. 1). Participants were first asked to walk at their self-selected
comfortable walking speed over the 10-m walkway. After completing
all comfortable gait speed trials, participants were asked to walk at fast
and slow speeds. The location of the smartphone and order of fast and
slow trials were randomized. To assess reliability, two trials were per-
formed for each condition, with a total of 30 trials completed per
participant. To ensure only steps that were collected concurrently by
the smartphone and GAITRite were analyzed, a digital video camera
was used to record all walking trials, with both systems reset after each
walking trial. To assess validity, all trials were utilized, with the
average value taken across all steps during each trial.

Fig. 1. Location of the smartphone during all walking trials:
body (A), bag (B), belt (C), hand (D), and pocket (E). The
rectangular border indicates the orientation and placement of
the smartphone in each condition.
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2.3. Data analysis

Gait data obtained from GAITRite were considered the gold stan-
dard. The GAITRite measured 5 m × 0.6m, with a spatial accuracy of
1.27 cm, and sampled data at a frequency of 80 Hz. Step length and step
time were reported automatically through the GAITRite software as the
anterior-posterior displacement and time separation of each con-
secutive footstep, respectively. Step velocity was computed as the
quotient of the step length and step time [15], with gait velocity being
the average step velocity across all steps. Cadence (steps/min) was
calculated as the number of steps taken over the total trial time. The
GAITRite walkway has previously been shown to be valid and reliable
for the quantification of step parameters [5,6].

A custom-built Android application, Sensor Data [16], was devel-
oped to collect system time and tri-axial accelerometer data from the
built-in hardware sensor (ST Microelectronics LSM330 accel-
erometer, ± 16 g range, 0.01m/s2 resolution) at the smartphone's
maximum sampling frequency (Android: SENSOR_DELAY_FASTEST;
95–105 Hz range). All data obtained was downloaded offline following
the completion of the data collection and analyzed using custom
written programs in MATLAB 2013b (Mathworks Inc., Natick, MA,
USA). Evaluations of step length, step time, and gait velocity were
calculated based on algorithms previously described [15,17–19]. Spe-
cifically, all accelerometer data were first resampled to a frequency of
100 Hz, as the sampling rate of smartphone-based sensors are not
constant [19]. Data in all three-axes were then filtered using a Butter-
worth 4th order low-pass filter with a 20 Hz cutoff frequency [15].
Antero-posterior (AP) accelerations were further filtered using a But-
terworth 4th order low-pass filter with a cutoff frequency of 2 Hz
[15,20]. Positive peaks in the filtered AP direction were identified as
heel strikes utilizing a built-in MATLAB function (findpeaks.m). From
visual observation and video inspection, only steps taken on the G-
AITRite platform were analyzed further.

Smartphone-based step time was defined as the time difference
between heel strikes [18]. Step length was calculated from the change
in height of the vertical position across each step cycle and the parti-
cipant’s leg length. Vertical position was computed by double in-
tegrating the vertical acceleration data, and high pass filtering the

result using a Butterworth 4th order filter with a 0.1 Hz cutoff fre-
quency to remove integration drift [20]. Step length was then computed
by using the relationship:

= −SL h l h2* 2* * 2 (1)

where SL is the step length, h is the change in vertical position, and l is
the leg length. Cadence, and gait velocity were computed identically to
the methods used for GAITRite.

2.4. Reliability

Reliability was assessed across trials for all derived gait parameters
from both GAITRite and the smartphone using the intraclass correlation
coefficient (ICC2,1) [21]. For ICC values, the following guidelines were
used to interpret results: values greater than 0.75 represented excellent
reliability, 0.60-0.75 good reliability, 0.40–0.60 fair reliability, and less
than 0.40 poor reliability [22]. All reliability data were analyzed in
SPSS 20.0 (IBM Inc., Armonk, NY, USA).

2.5. Validity

To evaluate concurrent validity, gait parameters quantified by the
two measurement devices across all gait speeds and locations were
evaluated using the Pearson correlation coefficient (r). Using Mukaka’s
Rule of Thumb for correlations [23], we specify r-values of 0.90–1.00 as
very high, 0.70–0.90 as high, 0.50–0.70 as moderate, 0.30–0.50 as low,
and less than 0.30 as negligible. Furthermore, Bland-Altman results
demonstrate the bias as the mean difference between systems, and 95%
limits of agreement when comparing smartphone-derived gait para-
meters from GAITRite [24].

3. Results

All 34 participants completed the protocol as prescribed, though ten
trials (1 body, 4 bag, 0 belt, 2 pocket, and 3 hand) could not be ana-
lyzed due to technical issues with the smartphone, leaving 1010 trials
for further evaluation. As the focus of this study pertains to the relia-
bility and validity of a smartphone-based assessment across all adult

Table 1a
Step length reliability and validity across smartphone location and walking speed.

Location Speed GAITRite Smartphone Validity

Mean ± SD (m) ICC (2,1) Mean ± SD (m) ICC (2,1) r Bias LOA Lower LOA Upper

Body Comfortable 0.58 ± 0.07 0.97 0.56 ± 0.08 0.91 0.833 * −0.027 −0.113 0.060
Slow 0.51 ± 0.09 0.95 0.46 ± 0.09 0.89 0.798 * −0.063 −0.187 0.061
Fast 0.69 ± 0.08 0.97 0.64 ± 0.09 0.91 0.820 * −0.050 −0.156 0.057
All Speeds 0.60 ± 0.11 0.98 0.56 ± 0.11 0.95 0.892 * −0.046 −0.156 0.064

Bag Comfortable 0.58 ± 0.08 0.97 0.57 ± 0.09 0.86 0.837 * −0.006 −0.106 0.093
Slow 0.52 ± 0.10 0.97 0.47 ± 0.11 0.92 0.896 * −0.050 −0.153 0.054
Fast 0.69 ± 0.08 0.96 0.65 ± 0.11 0.84 0.825 * −0.033 −0.163 0.097
All Speeds 0.60 ± 0.11 0.98 0.57 ± 0.13 0.92 0.901 * −0.030 −0.147 0.087

Belt Comfortable 0.58 ± 0.08 0.97 0.56 ± 0.08 0.87 0.728 * −0.026 −0.137 0.085
Slow 0.51 ± 0.09 0.98 0.49 ± 0.09 0.88 0.774 * −0.021 −0.146 0.104
Fast 0.69 ± 0.08 0.96 0.59 ± 0.09 0.90 0.671 * −0.098 −0.239 0.044
All Speeds 0.60 ± 0.11 0.98 0.55 ± 0.10 0.90 0.761 * −0.049 −0.192 0.095

Hand Comfortable 0.58 ± 0.07 0.98 0.45 ± 0.08 0.74 0.442 * −0.134 −0.292 0.024
Slow 0.51 ± 0.10 0.94 0.38 ± 0.11 0.79 0.749 * −0.123 −0.267 0.021
Fast 0.69 ± 0.08 0.96 0.50 ± 0.12 0.85 0.574 * −0.188 −0.387 0.116
All Speeds 0.60 ± 0.11 0.98 0.45 ± 0.11 0.84 0.696 * −0.149 −0.326 0.029

Pocket Comfortable 0.57 ± 0.08 0.95 0.58 ± 0.10 0.86 0.824 * 0.006 −0.109 0.121
Slow 0.51 ± 0.09 0.93 0.48 ± 0.11 0.85 0.850 * −0.012 −0.226 0.201
Fast 0.68 ± 0.08 0.97 0.67 ± 0.14 0.77 0.627 * −0.034 −0.152 0.085
All Speeds 0.59 ± 0.11 0.97 0.58 ± 0.14 0.88 0.827 * −0.013 −0.172 0.146

Abbreviations: r, Pearson’s Correlation; Bias, Mean Difference (Smartphone – GAITRite); LOA, Limits of agreement.
*P < 0.001.
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populations versus a gold standard, no statistical comparisons were
made between the young and older adult groups.

3.1. Reliability

All GAITRite spatial and temporal measures demonstrated excellent
reliability (Tables 1a–1d). Among the smartphone-derived measures,
ICCs were good to excellent (0.74–0.97) for all step length (Table 1a)
and gait velocity measures (Table 1c). Similarly, good to excellent re-
liability was demonstrated for the body and belt conditions at all speeds
for step time (Table 1b) and cadence (Table 1d). For these temporal

variables, the bag and pocket conditions showed fair to excellent re-
liability (0.50–0.85). The hand condition demonstrated a large range of
reliability scores across speeds for step time and cadence, with fast
walking demonstrating poor reliability (0.21 and 0.30, respectively),
slow walking showing fair reliability (0.57 and 0.51, respectively), and
comfortable walking having excellent reliability (0.89 and 0.88, re-
spectively).

3.2. Validity

Step length and step time correlations between the smartphone-

Table 1b
Step time reliability and validity across smartphone location and walking speed.

Location Speed GAITRite Smartphone Validity

Mean ± SD (sec) ICC (2,1) Mean ± SD (sec) ICC (2,1) r Bias LOA Lower LOA Upper

Body Comfortable 0.53 ± 0.06 0.96 0.53 ± 0.08 0.96 0.972 * 0.001 −0.025 0.027
Slow 0.64 ± 0.09 0.93 0.63 ± 0.08 0.89 0.905 * −0.015 −0.092 0.062
Fast 0.44 ± 0.05 0.96 0.44 ± 0.04 0.95 0.985 * 0.003 −0.013 0.018
All Speeds 0.53 ± 0.11 0.97 0.53 ± 0.10 0.96 0.975 * −0.003 −0.051 0.045

Bag Comfortable 0.54 ± 0.06 0.96 0.54 ± 0.05 0.79 0.887 * −0.002 −0.054 0.049
Slow 0.65 ± 0.11 0.94 0.58 ± 0.07 0.50 0.175 −0.072 −0.307 0.164
Fast 0.44 ± 0.05 0.97 0.44 ± 0.05 0.82 0.919 * −0.001 −0.039 0.037
All Speeds 0.54 ± 0.11 0.97 0.52 ± 0.08 0.80 0.728 * −0.023 −0.172 0.126

Belt Comfortable 0.54 ± 0.06 0.97 0.52 ± 0.06 0.80 0.603 * −0.013 −0.113 0.087
Slow 0.64 ± 0.10 0.97 0.58 ± 0.07 0.81 0.427 * −0.058 −0.247 0.131
Fast 0.44 ± 0.05 0.95 0.44 ± 0.05 0.88 0.952 * 0.001 −0.028 0.031
All Speeds 0.54 ± 0.11 0.99 0.52 ± 0.09 0.91 0.789 * −0.022 −0.153 0.109

Hand Comfortable 0.53 ± 0.06 0.97 0.53 ± 0.06 0.89 0.840 * −0.006 −0.069 0.057
Slow 0.65 ± 0.10 0.96 0.58 ± 0.08 0.57 −0.059 −0.081 −0.342 0.181
Fast 0.44 ± 0.05 0.95 0.46 ± 0.06 0.21 0.543 * 0.022 −0.084 0.128
All Speeds 0.54 ± 0.11 0.98 0.52 ± 0.08 0.70 0.603 * −0.018 −0.198 0.161

Pocket Comfortable 0.55 ± 0.06 0.92 0.53 ± 0.06 0.53 0.584 * −0.017 −0.126 0.092
Slow 0.65 ± 0.09 0.93 0.55 ± 0.09 0.62 0.020 −0.104 −0.355 0.146
Fast 0.44 ± 0.05 0.96 0.46 ± 0.07 0.62 0.402 * 0.017 −0.125 0.158
All Speeds 0.54 ± 0.11 0.97 0.51 ± 0.08 0.69 0.468 * −0.032 −0.231 0.167

Abbreviations: r, Pearson’s Correlation; Bias, Mean Difference (Smartphone − GAITRite); LOA, Limits of agreement.
*P < 0.001.

Table 1c
Gait velocity reliability and validity across smartphone location and walking speed.

Location Speed GAITRite Smartphone Validity

Mean ± SD (m/s) ICC (2,1) Mean ± SD (m/s) ICC (2,1) r Bias LOA Lower LOA Upper

Body Comfortable 1.11 ± 0.21 0.97 1.06 ± 0.21 0.93 0.903 * −0.052 −0.234 0.129
Slow 0.83 ± 0.22 0.95 0.76 ± 0.20 0.89 0.904 * −0.042 −0.260 0.177
Fast 1.60 ± 0.29 0.96 1.47 ± 0.25 0.94 0.863 * −0.133 −0.421 0.155
All Speeds 1.20 ± 0.40 0.99 1.11 ± 0.36 0.97 0.958 * −0.076 −0.323 0.170

Bag Comfortable 1.10 ± 0.21 0.97 1.08 ± 0.24 0.94 0.915 * −0.008 −0.195 0.178
Slow 0.83 ± 0.24 0.96 0.83 ± 0.19 0.86 0.914 * 0.020 −0.207 0.246
Fast 1.58 ± 0.29 0.97 1.50 ± 0.30 0.92 0.881 * −0.079 −0.370 0.212
All Speeds 1.19 ± 0.40 0.99 1.15 ± 0.37 0.96 0.953 * −0.023 −0.274 0.229

Belt Comfortable 1.10 ± 0.22 0.97 1.07 ± 0.18 0.91 0.873 * −0.327 −0.247 0.182
Slow 0.83 ± 0.24 0.98 0.86 ± 0.18 0.92 0.889 * 0.039 −0.206 0.284
Fast 1.57 ± 0.29 0.94 1.34 ± 0.23 0.86 0.756 * −0.236 −0.617 0.145
All Speeds 1.18 ± 0.40 0.99 1.09 ± 0.28 0.94 0.914 * −0.078 −0.447 0.291

Hand Comfortable 1.11 ± 0.22 0.98 0.86 ± 0.17 0.78 0.663 * −0.255 −0.578 0.068
Slow 0.81 ± 0.24 0.93 0.67 ± 0.19 0.82 0.803 * −0.097 −0.406 0.212
Fast 1.60 ± 0.29 0.96 1.10 ± 0.29 0.87 0.453 * −0.495 −1.095 0.106
All Speeds 1.19 ± 0.51 0.98 0.89 ± 0.28 0.91 0.785 * −0.284 −0.822 0.254

Pocket Comfortable 1.07 ± 0.22 0.93 1.11 ± 0.22 0.90 0.838 * 0.044 −0.204 0.291
Slow 0.82 ± 0.22 0.92 0.91 ± 0.21 0.87 0.783 * 0.101 −0.197 0.400
Fast 1.57 ± 0.31 0.95 1.47 ± 0.26 0.86 0.748 * −0.101 −0.517 0.315
All Speeds 1.16 ± 0.40 0.98 1.17 ± 0.33 0.94 0.897 * 0.013 −0.355 0.381

Abbreviations: r, Pearson’s Correlation; Bias, Mean Difference (Smartphone – GAITRite); LOA, Limits of agreement.
*P < 0.001.
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based and GAITRite-based systems were high to very high for the body
across all speeds (Tables 1a-1b; r: 0.798-0.985). While the bag and belt
conditions demonstrated moderate to very high correlations for step
length and step time across comfortable and fast walking (r:
0.603–0.952), negligible to low step time correlations were demon-
strated for slow walking (r = 0.175 and 0.427, respectively). The hand
and pocket locations similarly demonstrated negligible step time cor-
relations at slow walking (r = −0.059 and 0.020, respectively), with
low to high correlations across all other speeds for step length and step
time. Step length bias was within 2.7 cm for comfortable speeds, 6.3 cm
for slow speeds, and 9.8 cm for fast speeds, when the smartphone was
placed on either the body, bag, belt, or pocket. The hand condition
demonstrated larger biases ranging from 12.3 cm to 18.8 cm. Step time
bias was within 22 ms for all locations across comfortable and fast
speeds, with each location having a larger bias in step time at slow
speeds (bias: 15–104 ms).

Gait velocity correlations were high to very high (Table 1c; r:
0.748–0.958) for all locations across all speeds except for the hand
location at comfortable (r = 0.663) and fast speeds (r = 0.453). While
cadence correlations were moderate to high for all locations except the
pocket during comfortable or fast walking (Table 1c), slow walking
demonstrated negligible to low correlations (r: −0.026–0.391) in all
smartphone locations.

Bland-Altman analysis revealed that biases approached zero, parti-
cularly in the body, bag, and belt conditions (Fig. 2). Across gait
measures, smaller limits of agreement were demonstrated in the body,
bag, and belt conditions, with larger differences and outliers found
mostly during slow walking conditions and in the hand and pocket
conditions. The body condition showed the smallest bias, demon-
strating consistent 0.04 m, 0.0 s, 0.08 m/s2, and 2steps/min differences
for step length, step time, gait velocity, and cadence, respectively, at
walking speeds between 0.75 and 1.75 m/s2.

4. Discussion

In this study, a comprehensive smartphone-based assessment of gait
spatiotemporal variables among healthy adults across a range of gait

velocities and body locations has been conducted. The main findings of
this study are the excellent reliability and high validity of a smart-
phone-based gait assessment, particularly at comfortable and fast
speeds. Results for spatiotemporal measures were encouraging when a
smartphone was placed in various locations, though placement in the
body, bag, or belt positions provided the greatest validity.

In support of our hypothesis, the body and belt conditions demon-
strated excellent reliability and high to very high validity for most gait
variables. Results of step length, step time, and gait velocity at varying
gait speeds were comparable to those reported previously for a smart-
phone camera-based assessment [25]. Results from a validity study
comparing accelerometer-based sensors placed on the lumbar vertebrae
versus GAITRite were also similar to the current study for step length (r:
0.833–0.880), step time (r: 0.994–0.997), and step velocity (r:
0.882–0.900) [18]. Contrary to this hypothesis, reduced validity was
seen for cadence results at slow speeds for both locations and step time
at slow and comfortable speeds for the belt condition. At slow speeds,
Bland-Altman plots also demonstrated an increased bias. While a ma-
jority of the trials demonstrated small differences between the smart-
phone and GAITRite (Fig. 2P–T), a few trials had outliers when walking
at low speeds or cadence. Such outlier trials occurred due to peak AP
accelerations being detected as steps in the smartphone-based algo-
rithm earlier than GAITRite, leading to reduced step time and increased
cadence values. The ability to assess slow velocities is of high im-
portance, as improving gait speed is a strong predictor of mortality [4].
Further investigation is needed to identify and modify algorithms for
slow walking, including the use of other smartphone-embedded sensors
such as gyroscopes and magnetometers.

Contrary to our hypothesis, the bag condition revealed high relia-
bility and validity across speeds. While the bag chosen in this study is
not representative of all bags, it is possible that a single-shoulder bag in
which the phone is held in a fixed position might yield good results. Of
note is the size of the bag (15 cm width) in relation to our phone
(14.33 cm length), and having no other objects in the bag, allowing for
an undisturbed snug fit without extraneous movement applied to the
smartphone. The hand and pocket conditions, however, did reveal re-
latively worse results. The selection of these five locations was based on

Table 1d
Cadence reliability and validity across smartphone location and walking speed.

Location Speed GAITRite Smartphone Validity

Mean ± SD (steps/min) ICC (2,1) Mean ± SD (steps/min) ICC (2,1) r Bias LOA Lower LOA Upper

Body Comfortable 113.5 ± 11.5 0.97 113.4 ± 11.5 0.97 0.966 * −0.11 −5.99 5.78
Slow 95.3 ± 13.5 0.94 96.8 ± 12.2 0.88 0.244 † 9.39 −29.55 48.34
Fast 138.3 ± 14.7 0.96 137.3 ± 13.9 0.96 0.985 * −0.97 −6.14 4.19
All Speeds 116.7 ± 21.9 0.98 116.8 ± 20.7 0.97 0.868 * 2.69 −21.66 27.03

Bag Comfortable 112.5 ± 11.5 0.96 112.6 ± 11.1 0.81 0.896 * 0.46 −9.65 10.56
Slow 95.2 ± 14.8 0.95 105.7 ± 13.2 0.56 −0.088 16.35 −29.85 62.56
Fast 137.4 ± 15.0 0.97 137.2 ± 14.9 0.80 0.912 * 0.14 −12.37 12.64
All Speeds 115.8 ± 22.1 0.98 118.9 ± 18.9 0.85 0.739 * 5.67 −26.19 37.54

Belt Comfortable 113.0 ± 11.9 0.97 115.9 ± 12.8 0.78 0.571 * 2.95 −19.52 25.43
Slow 95.8 ± 14.2 0.98 104.0 ± 12.3 0.82 0.391 † 10.68 −21.47 42.82
Fast 137.1 ± 15.2 0.95 136.7 ± 15.0 0.85 0.941 * −0.47 −10.76 9.83
All Speeds 115.8 ± 21.8 0.99 119.2 ± 19.0 0.91 0.837 * 4.33 −20.60 29.27

Hand Comfortable 113.5 ± 11.8 0.98 114.9 ± 12.2 0.88 0.807 * 1.29 −13.37 15.95
Slow 93.8 ± 14.0 0.94 106.2 ± 16.1 0.51 −0.026 17.56 −30.64 65.76
Fast 139.1 ± 15.4 0.96 133.3 ± 16.1 0.30 0.621 * −6.08 −33.21 21.05
All Speeds 116.5 ± 23.0 0.98 118.7 ± 18.6 0.69 0.663 * 4.14 −33.92 42.19

Pocket Comfortable 111.1 ± 12.0 0.91 114.7 ± 13.0 0.50 0.516 * 3.59 −20.64 27.83
Slow 94.4 ± 12.6 0.92 112.8 ± 18.8 0.61 0.046 21.28 −25.63 68.20
Fast 137.4 ± 17.6 0.96 133.3 ± 19.5 0.63 0.405 * −4.06 −44.19 36.07
All Speeds 114.9 ± 22.7 0.97 120.5 ± 19.6 0.70 0.514 * 6.76 −36.63 50.15

Abbreviations: r, Pearson’s Correlation; Bias, Mean Difference (Smartphone – GAITRite); LOA, Limits of agreement.
*P < 0.001.
†P < 0.05.
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results from questionnaires [26] provided to over 1500 persons from
nine countries, where phones were carried upwards of 60% of the time
in bags or pant pockets for women and men, respectively. The following
most common locations included the belt-clip (women 0.8%, men
13.8%), on the upper body (women 2.2%, men 8.3%), and in the hands
(women 9.1%, men 3.5%). The hand location is of importance, as adults
often perform dual-task walking with a smartphone, either talking or
texting, leading to increased cognitive distraction, decreased gait ve-
locity, and increased lateral deviation [27]. On average, when placed in
the hand, the smartphone-based assessment in the current study un-
derestimated (negative bias) gait parameters, with moderate to high
correlations found. In order to properly evaluate the dual-task cost in
home-based environments, future studies should investigate the use of
unique algorithms for each phone location.

The current study has several limitations. First, knowledge of the
phone location is known a priori. While methods for detecting the lo-
cation of an accelerometer have been investigated [28], implementing
these algorithms was beyond the scope of this study. Additionally, we
utilized identical algorithms for each trial, therefore knowledge of lo-
cation would not affect the presented results. Second, only five to nine
steps were investigated per trial, with participants asked to walk in a
straight line over a level surface. Although trials were short, Orendurff
and colleagues [29] demonstrated that 40% of walking bouts last for
fewer than 12 steps, with possibly greater validity in longer duration
trials [9]. Furthermore, as it is recommended that a greater number of
steps be used to assess variability [30], due to space constraints of G-
AITRite, evaluation of gait variability from longer duration trials was

not feasible. Further investigation into the effect of free-living condi-
tions such as turning, walking on uneven or sloped surfaces, as well as
maneuvering around environmental hazards and crowds is needed.
Additionally, future work should investigate the generalizability of
smartphone-based assessments for persons of varying weight or gait
pathology. Assessment of compliance and validity across populations
can allow for robust community-based monitoring and clinical inter-
vention.

In conclusion, results of this study reveal that smartphone-based
assessments of gait are reliable and valid when placed on the body, bag,
or belt, particularly in comfortable and fast walking conditions.
Smartphone sensors can provide relevant home-based walking data
without the need for expensive instrumentation. Due to the ubiquity of
smartphones, cost and complexity of distribution and analysis is mini-
mized allowing for greater access to robust evaluations for clinicians
and patients alike.
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