# Random Numbers in Matlab – Part III

This is the final post in our series on random numbers in Matlab. In the first post, we discussed basic random number functions, and in the second post, we discussed the control of random number generation in Matlab and alternatives for applications with stronger requirements. In this post, we will demonstrate how to create probability distributions with the basic rand and randn functions of Matlab. This is useful in many engineering applications, including reliability analysis and communications.

# Random Numbers in Matlab – Part II

This is our second post in our series on random numbers in Matlab. The first post can be found here. In this post, I will explain how to control the random number generation functions in Matlab and discuss alternatives for projects with stronger requirements for randomness, such as cryptography.

# Modeling with ODEs in Matlab – Part 5B

And so we reach the end. We will wrap up this series with a look at the fascinating Lorenz Attractor. Like the logistic map of the previous lesson, the Lorenz Attractor has the structure and behavior of a complex system. Unlike the logistic map, the Lorenz Attractor is defined by a system of first order autonomous ordinary differential equations. Thus, it is a perfect example to use for this last lesson where we examine the importance of error tolerance in evaluation chaotic systems of ODEs.